The homogeneous mixture model (HMM) is widely in use for simulation of cavitating flows. The mass transfer is typically ruled by simplified models whose efficiency is strictly dependent on the empirical choice of vaporization/condensation constants. In the present paper, we formulate a physically based mass-transfer model relying on the solution of the complete Rayleigh–Plesset (RP) equation. The latter can model the elasticity of the bubbles and non-linear interaction with the external pressure field. The model is tested in different configurations, also considering comparisons with the Schnerr–Sauer model (SSm) and the linearized version of the RP equation. The preliminary simplified tests show that the SS model responds statically to pressure variations and thus in not able to reproduce the actual dynamics of cavitation, under certain circumstances. On the other hand, the linearized RP model (RPl), although dynamically responsive to pressure variations, produces unrealistic small-amplitude bubble fluctuations, whereas the complete RP model (RPc) gives more realistic results. Tests on the performance of the SSm and RP models were carried out considering the turbulent flow in a convergent–divergent Venturi channel, already tested in numerical and experimental reference research. Here, we use the incompressible HMM. The study highlights various crucial aspects of the RPc model, emphasizing its own ability in replicating the shedding cycle as a three-dimensional, and non-stationary phenomenon. On the other hand, the SSm model results as a valid approximation for initial growth stages but fails to capture complex dynamics during the collapse phase. The results are consistent with recent literature findings, and refinements in grid resolution enhance accuracy in capturing the non-stationary sheet-to-cloud vapor dynamics. Neglecting compressibility may account for disparities between numerical and experimental outcomes, especially concerning shock waves generation and propagation. The RPc model emerges as a good candidate in reproducing bubble cloud dynamics and, in the next future, can be implemented in compressible HMM.

1.
C. E.
Brennen
,
Fundamentals of Multiphase Flow
(
Cambridge University Press
,
2005
).
2.
C. E.
Brennen
, “
Cavitation in medicine
,”
Interface Focus
5
(
5
),
20150022
(
2015
).
3.
E.
Burzio
et al, “
Water disinfection by orifice induced hydrodynamic cavitation
,”
Ultrason. Sonochem.
60
,
104740
(
2020
).
4.
S. L.
Ceccio
and
C. E.
Brennen
, “
Observations of the dynamics and acoustics of attached cavities
,” in ASME Cavitation and Multiphase Flow Forum (
ASME
,
New York, NY
,
1990
), pp.
79
84
.
5.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Cambridge University Press
,
2014
).
6.
S.
Ceccio
and
C.
Brennen
, “
Observations of the dynamics and acoustics of travelling bubble cavitation
,”
J. Fluid Mech.
233
,
633
660
(
1991
).
7.
J. P.
Franc
, “
The Rayleigh-Plesset equation: A simple and powerful tool to understand various aspects of cavitation
,” in
Fluid Dynamics of Cavitation and Cavitating Turbopumps
(
Springer
,
Vienna
,
2007
), pp.
1
41
.
8.
L.
Rayleigh
, “
On the pressure developed in a liquid during the collapse of a spherical cavity
,”
Philos. Mag.
34
(
200
),
94
98
(
1917
).
9.
G.
Riccardi
and
E.
De Bernardis
, “
Numerical simulations of the dynamics and the acoustics of an axisymmetric bubble rising in an inviscid liquid
,”
Eur. J. Mech. B
79
,
121
140
(
2020
).
10.
D.
Fuster
and
T.
Colonius
, “
Modelling bubble clusters in compressible liquids
,”
J. Fluid Mech.
688
,
352
389
(
2011
).
11.
K.
Maeda
et al, “
Modeling and experimental analysis of acoustic cavitation bubble clouds for burst-wave lithotripsy
,”
J. Acoust. Soc. Am.
140
,
3307
(
2016
).
12.
E.
Giannadakis
,
C.
Arcoumanis
, and
M.
Gavaises
, “
Modelling of cavitation in diesel injector nozzles
,”
J. Fluid Mech.
616
,
153
193
(
2008
).
13.
Z.
Qin
et al, “
Simulation of cavitation bubbles in a convergent–divergent nozzle water jet
,”
J. Fluid Mech.
573
,
1
25
(
2007
).
14.
J.
Sauer
, “
Instationar kavitierende Stromungen - Ein neues modell, basierend auf front capturing (VoF) und blasendynamik
,” Ph.D. thesis (
University of Karlsruhe
,
Germany
,
2000
) (in German).
15.
A.
Savio
,
M.
Cianferra
, and
V.
Armenio
, “
Analysis of performance of cavitation models with analytically calculated coefficients
,”
Energies
14
(
19
),
6425
(
2021
).
16.
E.
Ghahramani
,
H.
Strom
, and
R. E.
Bensow
, “
Numerical simulation and analysis of multi-scale cavitating flows
,”
J. Fluid Mech.
922
,
A22
(
2021
).
17.
A.
Asnaghi
,
U.
Svennberg
, and
R. E.
Bensow
, “
Large eddy simulations of cavitating tip vortex flows
,”
Ocean Eng.
195
,
106703
(
2020
).
18.
C. T.
Hsiao
,
J.
Ma
, and
G. L.
Chahine
, “
Multiscale tow-phase flow modeling of sheet and cloud cavitation
,”
Int. J. Multiphase Flow
90
,
102
117
(
2017
).
19.
M. H.
Bappy
et al, “
A sub-grid scale cavitation inception model
,”
Phys. Fluids
34
(
3
),
033308
(
2022
).
20.
M.
Aditya
and
K.
Mahesh
, “
A compressible multi-scale model to simulate cavitating flows
,”
J. Fluid Mech.
961
,
A6
(
2023
).
21.
A.
Niedźwiedzka
,
G. H.
Schnerr
, and
W.
Sobieski
, “
Review of numerical models of cavitating flows with the use of the homogeneous approach
,”
Arch. Thermodyn.
37
(
2
),
71
(
2016
).
22.
B.
Budich
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Numerical simulation and analysis of condensation shocks in cavitating flow
,”
J. Fluid Mech.
838
,
759
813
(
2018
).
23.
H.
Ganesh
,
S. A.
Makihariu
, and
S. L.
Ceccio
, “
Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities
,”
J. Fluid Mech.
802
,
37
78
(
2016
).
24.
M.
Bhatt
and
K.
Mahesh
, “
Investigation of propeller cavitation using compressible large eddy simulations
,” in
Proceedings of the Sixth International Symposium on Marine Propulsors
(
2019
).
25.
B.
Budich
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Numerical investigation of a cavitating model propeller including compressible shock wave dynamics
,” in
Proceedings of the Fourth International Symposium on Marine Propulsors (SMP'15)
, Austin, TX, USA (
2015
).
26.
A. K.
Lidtke
,
F. H.
Lafeber
,
T.
Lloyd
, and
J.
Bosschers
, “
Predicting cavitating propeller noise in off-design conditions using scale-resolving CFD simulations
,”
Ocean Eng.
254
,
111176
(
2022
).
27.
S.
Sezen
et al, “
Numerical investigation of marine propeller underwater radiated noise using acoustic analogy Part 1: The influence of grid resolution
,”
Ocean Eng.
220
,
108448
(
2021
).
28.
J.
Sauer
and
G. H.
Schnerr
, “
Development of a new cavitation model based on bubble dynamics
,”
Z. Angew. Math. Mech.
81
(
S3
),
561
562
(
2001
).
29.
M. S.
Plesset
, “
The dynamics of cavitation bubbles
,”
J. Appl. Mech.
16
,
277
231
(
1949
).
30.
C.
Cintolesi
,
A.
Petronio
, and
V.
Armenio
, “
Turbulent structures of buoyant jet in cross-flow studied through large-eddy simulation
,”
Environ. Fluid Mech.
19
,
401
433
(
2019
).
31.
G. E.
Reisman
,
Y. C.
Wang
, and
C. E.
Brennen
, “
Observations of shock waves in cloud cavitation
,”
J. Fluid Mech.
355
,
255
283
(
1998
).
32.
K. R.
Laberteaux
and
S. L.
Ceccio
, “
Partial cavity flows. Part 1. Cavities forming on models without spanwise variation
,”
J. Fluid Mech.
431
,
1
41
(
2001
).
33.
W.
Yuan
,
J.
Sauer
, and
G. H.
Schnerr
, “
Modeling and computation of unsteady cavitation flows in injection nozzles
,”
Méc. Ind.
2
(
5
),
383
394
(
2001
).
34.
M.
Arora
,
C. D.
Ohl
, and
D.
Lohse
, “
Effect of nuclei concentration on cavitation cluster dynamics
,”
J. Acoust. Soc. Am.
121
(
6
),
3432
3436
(
2007
).
35.
N. X.
Lu
,
R. E.
Bensow
, and
G.
Bark
, “
Mesh resolution effects in simulating unsteady sheet cavitation
,”
Ship Technol. Res.
60
(
2
),
86
97
(
2013
).
You do not currently have access to this content.