Selective laser melting (SLM) technology has the advantage of quickly producing complex-shaped parts. To achieve good mechanical properties, it's vital to minimize defects that can occur because of high residual porosity if incorrect processing techniques are used. One effective way to prevent defects is by using computer simulations of underlying processes before printing in the industry. This paper presents a reduced-order numerical model of SLM processing that accurately predicts material porosity by focusing on the key mechanisms that affect the melting and consolidation processes. The focus is on the formation of defects and the expected time that is required until the consolidation of a powder bed is completed. Then the elasticity of the SLM processed materials near defects is analyzed. The modeling results for powder consolidation are shown for comparison with experimental data on stainless steel 316L powder during SLM. This information can be further used for proper selection of SLM parameters such as the scanning speed and the power of the laser source.

1.
W.
Gao
,
Y.
Zhang
,
D.
Ramanujan
,
K.
Ramani
,
Y.
Chen
,
C. B.
Williams
,
C. C. L.
Wang
,
Y. C.
Shin
,
S.
Zhang
, and
P. D.
Zavattieri
, “
The status, challenges, and future of additive manufacturing in engineering
,”
Comput.-Aided Des.
69
,
65
(
2015
).
2.
X.
Wang
,
M.
Jiang
,
Z.
Zhou
,
J.
Gou
, and
D.
Hui
, “
3D printing of polymer matrix composites: A review and prospective
,”
Composites, Part B
110
,
442
(
2017
).
3.
E. B.
Fonseca
,
A. H. G.
Gabriel
,
L. C.
Araújo
,
P. L. L.
Santos
,
K. N.
Campo
, and
E. S. N.
Lopes
, “
Assessment of laser power and scan speed influence on microstructural features and consolidation of AISI H13 tool steel processed by additive manufacturing
,”
Addit. Manuf.
34
,
101250
(
2020
).
4.
M.
Higashi
and
T.
Ozaki
, “
Selective laser melting of pure molybdenum: Evolution of defect and crystallographic texture with process parameters
,”
Mater. Des.
191
,
108588
(
2020
).
5.
P.
Rebesan
et al, “
Pure molybdenum manufactured by laser powder bed fusion: Thermal and mechanical characterization at room and high temperature
,”
Addit. Manuf.
47
,
102277
(
2021
).
6.
J.-P.
Kruth
,
G.
Levy
,
F.
Klocke
, and
T. H. C.
Childs
, “
Consolidation phenomena in laser and powder-bed based layered manufacturing
,”
CIRP Ann.-Manuf. Technol.
56
,
730
(
2007
).
7.
S. A.
Khairallah
and
A.
Anderson
, “
Mesoscopic simulation model of selective laser melting of stainless steel powder
,”
J. Mater. Process. Technol.
214
,
2627
(
2014
).
8.
S. A.
Khairallah
,
A. T.
Anderson
,
A.
Rubenchik
, and
W. E.
King
, “
Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones
,”
Acta Mater.
108
,
36
(
2016
).
9.
M. D.
Krivilyov
,
S. D.
Mesarovic
, and
D. P.
Sekulic
, “
Phase-field model of interface migration and powder consolidation in additive manufacturing of metals
,”
J. Mater. Sci.
52
,
4155
(
2017
).
10.
S.
Osher
and
J. A.
Sethian
, “
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations
,”
J. Comput. Phys.
79
,
12
(
1988
).
11.
D. V.
Lyubimov
and
T. P.
Lyubimova
, “
One method for numerical modelling in the problems with deformable fluids interfaces
,”
Model. Mech.
4
,
136
(
1990
).
12.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
(
1992
).
13.
M.
Sussman
,
P.
Smereka
, and
S.
Osher
, “
A level set approach for computing solutions to incompressible two-phase flow
,”
J. Comput. Phys.
114
,
146
(
1994
).
14.
M.
Sussman
,
E.
Fatemi
,
P.
Smereka
, and
S.
Osher
, “
An improved level set method for incompressible two-phase flows
,”
Comput. Fluids
27
,
663
(
1998
).
15.
Y. T.
Delorme
,
K.
Puri
,
J.
Nordstrom
,
V.
Linders
,
S.
Dong
, and
S. H.
Frankel
, “
A simple and efficient incompressible Navier–Stokes solver for unsteady complex geometry flows on truncated domains
,”
Comput. Fluids
150
,
84
(
2017
).
16.
X.-D.
Liu
,
S.
Osher
, and
T.
Chan
, “
Weighted essentially non-oscillatory schemes
,”
J. Comput. Phys.
115
,
200
(
1994
).
17.
J.
Crank
and
P.
Nicolson
, “
A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type
,”
Math. Proc. Cambridge Philos. Soc.
43
,
50
(
1947
).
18.
COMSOL
,
COMSOL Multiphysics® Programming Reference Manual, Version v5.
6, Licence No. 9602304; available at https://doc.comsol.com/5.6/doc/com.comsol.help.comsol/COMSOL_ProgrammingReferenceManual.pdf04.
19.
Y. D.
Chashechkin
, “
Drops: Crowns, spikes, sounds
” (in Russian),
Priroda
11
,
13
23
(
2016
).
20.
V. N.
Zubaryov
,
A. D.
Kozlov
, and
V. M.
Kuznetsov
,
Thermophysical Properties of Technically Important Gases at High Temperatures and Pressures
(
Energoatomizdat
,
Moscow
,
1989
) (in Russian).
21.
T.
Iida
and
R. I. L.
Guthrie
,
The Thermophysical Properties of Metallic Liquids
(
Oxford University Press Science
,
Oxford
,
2015
).
22.
M.
Kiuchi
, “
Design of semisolid metal-forming processes
,” in
Handbook of Metallurgical Process Design
, edited by
G. E.
Totten
,
K.
Funatani
, and
L.
Xie
(
CRC Press
,
Boca Raton
,
2003
).
23.
M. W.
Schraad
and
N.
Triantafyllidis
, “
Scale effects in media with periodic and nearly periodic microstructures, Part I: Macroscopic properties
,”
J. Appl. Mech.
64
(
4
),
751
(
1997
).
24.
I. V.
Sterkhova
,
L. V.
Kamaeva
, and
V. I.
Ladyanov
, “
Viscosity of the eutectic Fe85-xCr15Cx (x = 10–17) melts
,”
Phys. Chem. Liq.
58
(
5
),
559
(
2020
).
25.
J.
Frenkel
,
Kinetic Theory of Liquids
(
Oxford University Press
,
London
,
1946
).
26.
T.
Furumoto
,
M. R.
Alkahari
,
T.
Ueda
,
M. S.
Aziz
, and
A.
Hosokawa
, “
Monitoring of laser consolidation process of metal powder with high-speed video camera
,”
Phys. Procedia
39
,
760
(
2012
).
27.
I. A.
Ivanov
et al, “
Effect of laser-induced ultrasound treatment on material structure in laser surface treatment for selective laser melting applications
,”
Sci. Rep.
11
,
23501
(
2021
).
28.
S. A.
Gruzd
et al, “
Analysis of the effect of magnetic field on solidification of stainless steel in laser surface processing and additive manufacturing
,”
Metals
12
,
1540
(
2022
).
29.
H.-C.
Tran
and
Y.-L.
Lo
, “
Systematic approach for determining optimal processing parameters to produce parts with high density in selective laser melting process
,”
Int. J. Adv. Manuf. Technol.
105
,
4443
(
2019
).
30.
R. M.
Christensen
,
Mechanics of Composite Materials
(
Wiley-Interscience
,
New York
,
1979
).
31.
R. M.
Christensen
, “
Two theoretical elasticity micromechanics models
,”
J. Elasticity
50
,
15
(
1998
).
You do not currently have access to this content.