As a kind of non-Newtonian fluid, the Oldroyd-B fluid has widespread applications. To study the flow characteristics deeply is of great significance. In this paper, we consider a simple model of the Oldroyd-B fluid flow over a semi-infinite plate in a magnetic field. The governing equation is formulated, and the numerical solutions are obtained using the finite difference method. To deal with the semi-infinite region, the artificial boundary method is applied to construct the absorbing boundary condition (ABC) with the (inverse) z-transform, which converts the semi-infinite region to a finite one. To test the accuracy of the numerical scheme, a numerical example by introducing the source term is presented. Graphs show the rationality of the ABC by comparing the fluid flow velocity between the direct truncated boundary condition and the ABC. The effects of the amplitude, the frequency, the relaxation time parameter, the retardation time parameter, and the magnetic field on the magnitude and the cycle of flow velocity are investigated and discussed. The main findings are that the retardation time parameter promotes the velocity of the fluid flow, while the relaxation time and magnetic field hinder the fluid flow. When the relaxation time is equal to the retardation time, the Oldroyd-B fluid can approximate the Newtonian fluid. In addition, the oscillating cycle becomes shorter for a smaller relaxation time parameter or a larger magnetic field and frequency.

1.
N. G.
Kafoussias
,
E. E.
Tzirtzilakis
, and
A.
Raptis
, “
Free-forced convective boundary-layer flow of a biomagnetic fluid under the action of a localized magnetic field
,”
Can. J. Phys.
86
(
3
),
447
457
(
2008
).
2.
T. H.
Lee
,
D. C.
Kyritsis
, and
C. F. F.
Lee
, “
Modeling of film boiling and film vaporization on engine piston tops
,” in
Proceeding of the ASME Internal Combustion Engine Division Fall Technical Conference
(
ASME
,
2012
), pp.
813
821
.
3.
Z.
Li
,
G.
Wu
, and
Y.
Shi
, “
Wave motions due to a point source pulsating and advancing at forward speed parallel to a semi-infinite ice sheet
,”
Phys. Rev. Fluids
9
(
1
),
014801
(
2024
).
4.
R.
Kumar
,
I. A.
Abbas
,
V.
Sharma
, and
R.
Shyarn
, “
A finite element study of unsteady free convection heat and mass transfer in a Walters-B viscoelastic flow past a semi-infinite vertical plate
,”
J. Comput. Theor. Nanosci.
11
(
12
),
2469
2475
(
2014
).
5.
V. S.
Rao
,
L. A.
Babu
, and
R. S.
Raju
, “
Finite element analysis of radiation and mass transfer flow past semi-infinite moving vertical plate with viscous dissipation
,”
J. Appl. Fluid Mech.
6
(
3
),
321
329
(
2013
).
6.
S. A.
Gaffar
,
V. R.
Prasad
, and
E. K.
Reddy
, “
Computational study of Jeffrey's non-Newtonian fluid past a semi-infinite vertical plate with thermal radiation and heat generation/absorption
,”
Ain Shams Eng. J.
8
(
2
),
277
294
(
2017
).
7.
D.
Lin
,
M.
He
,
M.
Xu
,
C.
Zhou
, and
X.
Chen
, “
An updated numerical model of fracture fluid loss coupled with wellbore flow in managed pressure drilling
,”
Phys. Fluids
35
(
5
),
053110
(
2023
).
8.
D. S.
Hariprasad
and
T. W.
Secomb
, “
Motion of red blood cells near microvessel walls: Effects of a porous wall layer
,”
J. Fluid Mech.
705
,
195
212
(
2012
).
9.
A.
Rasheed
and
M. S.
Anwar
, “
Interplay of chemical reacting species in a fractional viscoelastic fluid flow
,”
J. Mol. Liq.
273
,
576
588
(
2019
).
10.
B.
Thomases
and
M.
Shelley
, “
Emergence of singular structures in Oldroyd-B fluids
,”
Phys. Fluids
19
(
10
),
103103
(
2007
).
11.
G.
Li
and
D. L.
Koch
, “
Electrophoresis in dilute polymer solutions
,”
J. Fluid Mech.
884
,
A9
(
2019
).
12.
O. S.
Pak
,
L.
Zhu
,
L.
Brandt
, and
E.
Lauga
, “
Micropropulsion and microrheology in complex fluids via symmetry breaking
,”
Phys. Fluids
24
(
10
),
103102
(
2012
).
13.
S.
Chun
,
B.
Ji
,
Z.
Yang
,
V. K.
Malik
, and
J.
Feng
, “
Experimental observation of a confined bubble moving in shear-thinning fluids
,”
J. Fluid Mech.
953
,
A12
(
2022
).
14.
M.
Zhang
,
X.
Shen
,
J.
Ma
, and
B.
Zhang
, “
Theoretical analysis of convective heat transfer of Oldroyd-B fluids in a curved pipe
,”
Int. J. Heat Mass Transfer
51
(
3–4
),
661
671
(
2008
).
15.
K.
Hu
,
M.
He
, and
Q.
Chen
, “
Instability of thermocapillary liquid layers for Oldroyd-B fluid
,”
Phys. Fluids
28
(
3
),
033105
(
2016
).
16.
W.
Tan
and
T.
Masuoka
, “
Stokes' first problem for an Oldroyd-B fluid in a porous half space
,”
Phys. Fluids
17
(
2
),
023101
(
2005
).
17.
Z.
Yu
,
P.
Wang
,
J.
Lin
, and
H.
Hu
, “
Equilibrium positions of the elasto-inertial particle migration in rectangular channel flow of Oldroyd-B viscoelastic fluids
,”
J. Fluid Mech.
868
,
316
340
(
2019
).
18.
J.
Eggers
,
M. A.
Herrada
, and
J. H.
Snoeijer
, “
Self-similar breakup of polymeric threads as described by the Oldroyd-B model
,”
J. Fluid Mech.
887
,
A19
(
2020
).
19.
X.
Wang
,
H.
Xu
, and
H.
Qi
, “
Transient magnetohydrodynamic flow and heat transfer of fractional Oldroyd-B fluids in a microchannel with slip boundary condition
,”
Phys. Fluids
32
(
10
),
103104
(
2020
).
20.
X.
Chi
and
X.
Jiang
, “
Finite difference Laguerre–Legendre spectral method for the two-dimensional generalized Oldroyd-B fluid on a semi-infinite domain
,”
Appl. Math. Comput.
402
,
126138
(
2021
).
21.
L.
Feng
,
F.
Liu
,
I.
Turner
, and
P.
Zhuang
, “
Numerical methods and analysis for simulating the flow of a generalized Oldroyd-B fluid between two infinite parallel rigid plates
,”
Int. J. Heat Mass Transfer
115
,
1309
1320
(
2017
).
22.
S.
Asghar
,
M. R.
Mohyuddin
, and
T.
Hayat
, “
Effects of Hall current and heat transfer on flow due to a pull of eccentric rotating disks
,”
Int. J. Heat Mass Transfer
48
(
3–4
),
599
607
(
2005
).
23.
V. T.
Borukhov
and
G. M.
Zayats
, “
Identification of a time-dependent source term in nonlinear hyperbolic or parabolic heat equation
,”
Int. J. Heat Mass Transfer
91
,
1106
1113
(
2015
).
24.
M. K.
Groff
,
S. J.
Ormiston
, and
H. M.
Soliman
, “
Numerical solution of film condensation from turbulent flow of vapor-gas mixtures in vertical tubes
,”
Int. J. Heat Mass Transfer
50
(
19–20
),
3899
3912
(
2007
).
25.
W.
Xu
, “
Cell-centered finite difference method for parabolic equation
,”
Appl. Math. Comput.
235
,
66
79
(
2014
).
26.
Z.
Chen
and
W.
Zheng
, “
Convergence of the uniaxial perfectly matched layer method for time-harmonic scattering problems in two-layered media
,”
SIAM J. Numer. Anal.
48
(
6
),
2158
2185
(
2010
).
27.
H.
Han
,
X.
Wu
, and
Z.
Xu
, “
Artificial boundary method for Burgers' equation using nonlinear boundary conditions
,”
J. Comput. Math.
24
(
3
),
295
304
(
2006
).
28.
M.
Medvinsky
,
S.
Tsynkov
, and
E.
Turkel
, “
Direct implementation of high order BGT artificial boundary conditions
,”
J. Comput. Phys.
376
,
98
128
(
2018
).
29.
G.
Gao
and
S.
Sun
, “
The finite difference approximation for a class of fractional sub-diffusion equations on a space unbounded domain
,”
J. Comput. Phys.
236
,
443
460
(
2013
).
30.
L.
Liu
,
S.
Chen
,
L.
Feng
,
J.
Wang
,
S.
Zhang
,
Y.
Chen
,
X.
Si
, and
L.
Zheng
, “
Analysis of the anomalous diffusion in comb structure with absorbing boundary conditions
,”
J. Comput. Phys.
490
,
112315
(
2023
).
31.
T.
Hagstrom
and
T.
Warburton
, “
Complete radiation boundary conditions: Minimizing the long time error growth of local methods
,”
SIAM J. Numer. Anal.
47
(
5
),
3678
3704
(
2009
).
32.
H.
Han
and
X.
Wu
,
Artificial Boundary Method
(
Tsinghua University Press
,
Beijing
,
2013
).
33.
C.
Zheng
,
Q.
Du
,
X.
Ma
, and
J.
Zhang
, “
Stability and error analysis for a second-order fast approximation of the local and nonlocal diffusion equations on the real line
,”
SIAM J. Numer. Anal.
58
(
3
),
1893
1917
(
2020
).
34.
C.
Zheng
,
J.
Hu
,
Q.
Du
, and
J.
Zhang
, “
Numerical solution of the nonlocal diffusion equation on the real line
,”
SIAM J. Sci. Comput.
39
(
5
),
A1951
A1968
(
2017
).
35.
X.
Antoine
and
C.
Besse
, “
Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation
,”
J. Comput. Phys.
188
(
1
),
157
175
(
2003
).
36.
B.
Li
,
J.
Zhang
, and
C.
Zheng
, “
An efficient second-order finite difference method for the one-dimensional Schrödinger equation with absorbing boundary conditions
,”
SIAM J. Numer. Anal.
56
(
2
),
766
791
(
2018
).
37.
M. S.
Krakov
,
A. R.
Zakinyan
, and
A. A.
Zakinyan
, “
Instability of the miscible magnetic/non-magnetic fluid interface
,”
J. Fluid Mech.
913
,
A30
(
2021
).
38.
T.
Hayat
,
M.
Hussain
, and
M.
Khan
, “
Hall effect on flows of an Oldroyd-B fluid through porous medium for cylindrical geometries
,”
Comput. Math. Appl.
52
(
3–4
),
269
282
(
2006
).
39.
P.
Rowghanian
,
C. D.
Meinhart
, and
O.
Campàs
, “
Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields
,”
J. Fluid Mech.
802
,
245
262
(
2016
).
40.
M. V.
Krishna
,
N. A.
Ahammad
, and
A. J.
Chamkha
, “
Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface
,”
Case Stud. Therm. Eng.
27
,
101229
(
2021
).
41.
M.
Madhua
,
N.
Kishana
, and
A. J.
Chamkha
, “
Unsteady flow of a Maxwell nanofluid over a stretching surface in the presence of magnetohydrodynamic and thermal radiation effects
,”
Propul. Power Res.
6
(
1
),
31
40
(
2017
).
42.
S.
Manjunatha
,
V.
Puneeth
,
B. J.
Gireesha
, and
A. J.
Chamkha
, “
Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet
,”
J. Appl. Comput. Mech.
8
(
4
),
1279
1286
(
2022
).
43.
D.
Wang
,
D.
Tan
, and
P. T.
Nhan
, “
A lattice Boltzmann method for simulating viscoelastic drops
,”
Phys. Fluids
31
(
7
),
073101
(
2019
).
44.
J. F.
Cossette
,
P. K.
Smolarkiewicz
, and
P.
Charbonneau
, “
The Monge–Ampere trajectory correction for semi-Lagrangian schemes
,”
J. Comput. Phys.
274
,
208
229
(
2014
).
45.
M. M.
Kaleem
,
M.
Usman
,
M. I.
Asjad
, and
S. M.
Eldin
, “
Magnetic field, variable thermal conductivity, thermal radiation, and viscous dissipation effect on heat and momentum of fractional Oldroyd-B bio nano-fluid within a channel
,”
Fractal Fract.
6
(
12
),
712
(
2022
).
46.
A.
Vorobev
,
O.
Zikanov
,
P. A.
Davidson
, and
B.
Knaepen
, “
Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number
,”
Phys. Fluids
17
(
12
),
125105
(
2005
).
47.
B.
Kumar
,
G. S.
Seth
,
R.
Nandkeolyar
, and
A. J.
Chamkha
, “
Outlining the impact of induced magnetic field and thermal radiation on magneto-convection flow of dissipative fluid
,”
Int. J. Therm. Sci.
146
,
106101
(
2019
).
48.
M. V.
Krishna
,
B. V.
Swarnalathamma
, and
A. J.
Chamkha
, “
Investigations of Soret, Joule and Hall effects on MHD rotating mixed convective flow past an infinite vertical porous plate
,”
J. Ocean Eng. Sci.
4
(
3
),
263
275
(
2019
).
49.
X.
Piao
,
S.
Bu
,
S.
Bak
, and
P.
Kim
, “
An iteration free backward semi-Lagrangian scheme for solving incompressible Navier–Stokes equations
,”
J. Comput. Phys.
283
,
189
204
(
2015
).
50.
H.
Ding
and
C.
Shu
, “
A stencil adaptive algorithm for finite difference solution of incompressible viscous flows
,”
J. Comput. Phys.
214
(
1
),
397
420
(
2006
).
51.
J.
Wang
,
J.
Yang
, and
J.
Zhang
, “
Stability and convergence analysis of high-order numerical schemes with DtN-type absorbing boundary conditions for nonlocal wave equations
,”
IMA J. Numer. Anal.
44
,
604
632
(
2024
).
52.
Z.
Sun
,
Numerical Methods for PDE
(
Beijing Science and Technology Press
,
2005
).
53.
S.
Hina
,
M.
Munir
, and
M.
Mustafa
, “
A non-Fourier heat flux approach to model MHD Oldroyd-B fluid flow due to bidirectional stretching surface
,”
Int. J. Mech. Sci.
131–132
,
146
154
(
2017
).
54.
M. S.
Abel
,
J.
Tawade
, and
M. M.
Nandeppanavar
, “
MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet
,”
Meccanica
47
,
385
393
(
2012
).
55.
A. M.
Megahed
, “
Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity
,”
Chin. Phys. B
22
,
094701
(
2013
).
56.
Z.
Shafique
,
M.
Mustafa
, and
A.
Mushtaq
, “
Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy
,”
Results Phys.
6
,
627
633
(
2016
).
You do not currently have access to this content.