Adsorptive phenomena involving dispersed iron oxide superparamagnetic nanoparticles and asphaltenes in crude oil have been profiled as promising technological alternatives, particularly since these interactions can induce significant structural changes within the oil matrices, effectively inhibiting the formation of complex long-range viscoelastic structures. Furthermore, the effect of adsorbed asphaltenes on magnetic dipolar interactions among particles has been proven, showing the formation of multiple asphaltene layers that stimulate a steric repulsive barrier. Despite the discussed hindering phenomena, this research demonstrated the effectiveness of the sequence of physical processes framework to provide intra-cycle structure-rheological interpretations in large amplitude oscillatory shear of a ferrofluid-modified heavy oil, upon the application of an external magnetic field. The analysis proved that disordered nanoparticle/asphaltene aggregates are highly extended and naturally formed in the absence of magnetic forces. In contrast, in the presence of a perpendicular field applied by a controlled rate magneto-rheometer, the formation of interacting structural aggregates of several hundred nanometers was observed, analogous to magnetorheological fluids. These results were validated by adjusting a phenomenological model that effectively represented the intricate processes involved in the formation and reorientation of aggregates, based on the experimental data acquired from zero-field-cooled and field-cooled magnetization curves. This revealed a distinct blocking temperature distribution at around 274 K, which was linked to Brownian relaxation phenomena exhibited by nanoparticle aggregates. In this regard, this research provided a precise extended description of the effect of magnetic fields on the microstructural organization of complex fluids using nonlinear rheology and magnetometry.

1.
A. B.
Bazyleva
,
M. D. A.
Hasan
,
M.
Fulem
,
M.
Becerra
, and
J. M.
Shaw
, “
Bitumen and heavy oil rheological properties: Reconciliation with viscosity measurements
,”
J. Chem. Eng. Data
55
(
3
),
1389
1397
(
2010
).
2.
Y.
Wang
,
W.
Wang
, and
L.
Wang
, “
Understanding the relationships between rheology and chemistry of asphalt binders: A review
,”
Constr. Build. Mater.
329
,
127161
(
2022
).
3.
L.
Eberhardsteiner
,
J.
Füssl
,
B.
Hofko
,
F.
Handle
,
M.
Hospodka
,
R.
Blab
, and
H.
Grothe
, “
Influence of asphaltene content on mechanical bitumen behavior: Experimental investigation and micromechanical modeling
,”
Mater. Struct.
48
(
10
),
3099
3112
(
2015
).
4.
D.
Lesueur
, “
The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification
,”
Adv. Colloid Interface Sci.
145
(
1–2
),
42
82
(
2009
).
5.
J. P.
Pfeiffer
and
R. N. J.
Saal
, “
Asphaltic bitumen as colloid system
,”
J. Phys. Chem.
44
(
2
),
139
149
(
1940
).
6.
K. J.
Leontaritis
and
G. A.
Mansoori
, “
Asphaltene flocculation during oil production and processing: A thermodynamic collodial model
,” in
SPE International Symposium on Oilfield Chemistry
(The Society of Petroleum Engineers (SPE)
1987
), pp.
SPE-16258
.
7.
S. J.
Park
and
G.
Ali Mansoori
, “
Aggregation and deposition of heavy organics in petroleum crudes
,”
Energy Sources
10
(
2
),
109
125
(
1988
).
8.
J. P.
Dickie
and
T. F.
Yen
, “
Macrostructures of the asphaltic fractions by various instrumental methods
,”
Anal. Chem.
39
(
14
),
1847
1852
(
1967
).
9.
O. C.
Mullins
, “
The modified yen model
,”
Energy Fuels
24
(
4
),
2179
2207
(
2010
).
10.
P.
Redelius
, “
Asphaltenes in bitumen, what they are and what they are not
,”
Road Mater. Pavement Des.
10
(
sup1
),
25
43
(
2009
).
11.
A.
Cosultchi
,
P.
Bosch
, and
V.
Lara
, “
Small-angle X-ray scattering study of oil- and deposit-asphaltene solutions
,”
Colloid Polym. Sci.
281
(
4
),
325
330
(
2003
).
12.
B.
Schuler
,
Y.
Zhang
,
F.
Liu
,
A. E.
Pomerantz
,
A. B.
Andrews
,
L.
Gross
,
V.
Pauchard
,
S.
Banerjee
, and
O. C.
Mullins
, “
Overview of asphaltene nanostructures and thermodynamic applications
,”
Energy Fuels
34
(
12
),
15082
15105
(
2020
).
13.
J.
Choi
,
F.
Nettesheim
, and
S. A.
Rogers
, “
The unification of disparate rheological measures in oscillatory shearing
,”
Phys. Fluids
31
(
7
),
073107
(
2019
).
14.
K.
Hyun
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
(
12
),
1697
1753
(
2011
).
15.
M.
Wilhelm
, “
Fourier-transform rheology
,”
Macromol. Mater. Eng.
287
(
2
),
83
105
(
2002
).
16.
M.
Kamkar
,
R.
Salehiyan
,
T. B.
Goudoulas
,
M.
Abbasi
,
C.
Saengow
,
E.
Erfanian
,
S.
Sadeghi
,
G.
Natale
,
S. A.
Rogers
,
A. J.
Giacomin
, and
U.
Sundararaj
, “
Large amplitude oscillatory shear flow: Microstructural assessment of polymeric systems
,”
Prog. Polym. Sci.
132
,
101580
(
2022
).
17.
S. A.
Rogers
and
M. P.
Lettinga
, “
A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models
,”
J. Rheol.
56
(
1
),
1
25
(
2011
).
18.
S. A.
Rogers
, “
In search of physical meaning: Defining transient parameters for nonlinear viscoelasticity
,”
Rheol. Acta
56
(
5
),
501
525
(
2017
).
19.
P.
Abivin
,
S. D.
Taylor
, and
D.
Freed
, “
Thermal behavior and viscoelasticity of heavy oils
,”
Energy Fuels
26
(
6
),
3448
3461
(
2012
).
20.
N. I. M.
Yusoff
,
M. T.
Shaw
, and
G. D.
Airey
, “
Modelling the linear viscoelastic rheological properties of bituminous binders
,”
Constr. Build. Mater.
25
(
5
),
2171
2189
(
2011
).
21.
E.
Behzadfar
and
S. G.
Hatzikiriakos
, “
Viscoelastic properties and constitutive modelling of bitumen
,”
Fuel
108
,
391
399
(
2013
).
22.
L.
Shan
,
H.
He
,
N. J.
Wagner
, and
Z.
Li
, “
Nonlinear rheological behavior of bitumen under LAOS stress
,”
J. Rheol.
62
(
4
),
975
989
(
2018
).
23.
F. A.
Morrison
,
Understanding Rheology
(
Oxford University Press
,
2001
).
24.
F.
Olard
and
H.
Di Benedetto
, “
General “2S2P1D” model and relation between the linear viscoelastic behaviours of bituminous binders and mixes
,”
Road Mater. Pavement Des.
4
(
2
),
185
224
(
2003
).
25.
H.
Di Benedetto
,
N.
Mondher
,
C.
Sauzéat
, and
F.
Olard
, “
Three-dimensional thermo-viscoplastic behaviour of bituminous materials: The DBN model
,”
Road Mater. Pavement Des.
8
(
2
),
285
315
(
2007
).
26.
P.
Gayte
,
H.
Di Benedetto
,
C.
Sauzéat
, and
Q. T.
Nguyen
, “
Influence of transient effects for analysis of complex modulus tests on bituminous mixtures
,”
Road Mater. Pavement Des.
17
(
2
),
271
289
(
2016
).
27.
H. M.
Nguyen
,
S.
Pouget
,
H.
Di Benedetto
, and
C.
Sauzéat
, “
Time-temperature superposition principle for bituminous mixtures
,”
Eur. J. Environ. Civil Eng.
13
(
9
),
1095
1107
(
2009
).
28.
C. W.
Macosko
,
Rheology: Principles, Measurements, and Applications
(
Wiley-VCH
,
1994
).
29.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids. Volume 1: Fluid Mechanics
(
A Wiley-Interscience Publication, John Wiley & Sons
,
1987
).
30.
A. J.
Giacomin
,
R. S.
Jeyaseelan
,
T.
Samurkas
, and
J. M.
Dealy
, “
Validity of separable BKZ model for large amplitude oscillatory shear
,”
J. Rheol.
37
(
5
),
811
826
(
1993
).
31.
A.
Padmarekha
,
K.
Chockalingam
,
U.
Saravanan
,
A. P.
Deshpande
, and
J. M.
Krishnan
, “
Large amplitude oscillatory shear of unmodified and modified bitumen
,”
Road Mater. Pavement Des.
14
(
sup1
),
12
24
(
2013
).
32.
R. H.
Ewoldt
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
(
6
),
1427
1458
(
2008
).
33.
C. J.
Dimitriou
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress)
,”
J. Rheol.
57
(
1
),
27
70
(
2013
).
34.
Y.
Wu
,
P.
Huang
,
Y.
Yu
,
C.
Shi
,
H.
Chen
,
H.
Wang
,
J.
Yang
,
Z.
Leng
, and
W.
Huang
, “
Nonlinear rheological performance characterization of styrene-butadiene-styrene and crumb rubber composite modified bitumen using large amplitude oscillatory shear tests
,”
J. Cleaner Prod.
385
,
135712
(
2023
).
35.
S.
Gulzar
,
C.
Castorena
, and
S.
Underwood
, “
An investigation into the nonlinear rheological behavior of modified asphalt binders using large amplitude oscillatory shear rheology
,”
Int. J. Pavement Eng.
24
(
1
),
2211211
(
2023
).
36.
S.
Gulzar
and
B. S.
Underwood
, “
Nonlinear viscoelastic response of crumb rubber modified asphalt binder under large strains
,”
Transp. Res. Rec.
2674
(
3
),
139
149
(
2020
).
37.
K. S.
Cho
,
K.
Hyun
,
K. H.
Ahn
, and
S. J.
Lee
, “
A geometrical interpretation of large amplitude oscillatory shear response
,”
J. Rheol.
49
(
3
),
747
758
(
2005
).
38.
A. J.
Giacomin
,
R. B.
Bird
,
L. M.
Johnson
, and
A. W.
Mix
, “
Large-amplitude oscillatory shear flow from the corotational Maxwell model
,”
J. Non-Newtonian Fluid Mech.
166
(
19
),
1081
1099
(
2011
).
39.
C. O.
Klein
,
H. W.
Spiess
,
A.
Calin
,
C.
Balan
, and
M.
Wilhelm
, “
Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response
,”
Macromolecules
40
(
12
),
4250
4259
(
2007
).
40.
C.-W.
Lee
and
S. A.
Rogers
, “
A sequence of physical processes quantified in LAOS by continuous local measures
,”
Korea-Aust. Rheol. J.
29
(
4
),
269
279
(
2017
).
41.
J. D.
Park
and
S. A.
Rogers
, “
Rheological manifestation of microstructural change of colloidal gel under oscillatory shear flow
,”
Phys. Fluids
32
(
6
),
063102
(
2020
).
42.
M. D.
Contreras–Mateus
,
F. H.
Sánchez
,
D. M.
Cañas-Martínez
,
N. N.
Nassar
, and
A.
Chaves–Guerrero
, “
Effect of asphaltene adsorption on the magnetic and magnetorheological properties of heavy crude oils and Fe3O4 nanoparticles systems
,”
Fuel
318
,
123684
(
2022
).
43.
M. D.
Contreras–Mateus
,
M. T.
López–López
,
E.
Ariza-León
, and
A.
Chaves–Guerrero
, “
Rheological implications of the inclusion of ferrofluids and the presence of uniform magnetic field on heavy and extra-heavy crude oils
,”
Fuel
285
,
119184
(
2021
).
44.
L.
Mao
,
S.
Elborai
,
X.
He
,
M.
Zahn
, and
H.
Koser
, “
Direct observation of closed-loop ferrohydrodynamic pumping under traveling magnetic fields
,”
Phys. Rev. B
84
(
10
),
104431
(
2011
).
45.
R. E.
Rosensweig
,
Ferrohydrodynamics
(
Courier Corporation
,
2013
).
46.
M.
Zahn
and
D. R.
Greer
, “
Ferrohydrodynamic pumping in spatially uniform sinusoidally time-varying magnetic fields
,”
J. Magn. Magn. Mater.
149
(
1
),
165
173
(
1995
).
47.
M.
Zahn
and
L. L.
Pioch
, “
Ferrofluid flows in AC and traveling wave magnetic fields with effective positive, zero or negative dynamic viscosity
,”
J. Magn. Magn. Mater.
201
(
1
),
144
148
(
1999
).
48.
A.
Chaves
,
F.
Gutman
, and
C.
Rinaldi
, “
Torque and bulk flow of ferrofluid in an annular gap subjected to a rotating magnetic field
,”
J. Fluids Eng.
129
(
4
),
412
422
(
2006
).
49.
A.
Chaves
,
C.
Rinaldi
,
S.
Elborai
,
X.
He
, and
M.
Zahn
, “
Bulk flow in ferrofluids in a uniform rotating magnetic field
,”
Phys. Rev. Lett.
96
(
19
),
194501
(
2006
).
50.
A.
Chaves
,
I.
Torres-Diaz
, and
C.
Rinaldi
, “
Flow of ferrofluid in an annular gap in a rotating magnetic field
,”
Phys. Fluids
22
(
9
),
092002
(
2010
).
51.
T.
Sawada
,
T.
Tanahashi
, and
T.
Ando
, “
Two-dimensional flow of magnetic fluid between two parallel plates
,”
J. Magn. Magn. Mater.
65
(
2
),
327
329
(
1987
).
52.
S.
Kamiyama
,
M.
Okubo
, and
F.
Fujisawa
, “
Recent developments of technology in magnetic fluid experiments
,”
Exp. Therm. Fluid Sci.
5
(
5
),
641
651
(
1992
).
53.
D. G.
Actis
,
I. J.
Bruvera
,
G. A.
Pasquevich
, and
P.
Mendoza Zélis
, “
Fixed magnetic nanoparticles: Obtaining anisotropy energy density from high field magnetization
,”
J. Magn. Magn. Mater.
563
,
169962
(
2022
).
54.
ASTM D1319-20a
,
Standard Test Method for Hydrocarbon Types in Liquid Petroleum Products by Fluorescent Indicator Adsorption
(
ASTM International
,
West Conshohocken, PA
,
2020
), www.astm.org.
55.
ASTM D6560-17
,
Standard Test Method for Determination of Asphaltenes (Heptane Insolubles) in Crude Petroleum and Petroleum Products
(
ASTM International
,
West Conshohocken, PA
,
2017
), www.astm.org.
56.
ASTM D2549 - 02(2017)
,
Standard Test Method for Separation of Representative Aromatics and Nonaromatics Fractions of High-Boiling Oils by Elution Chromatography
(
ASTM International
,
West Conshohocken, PA
,
2017
), www.astm.org.
57.
ASTM D70/D70M-21
,
Standard Test Method for Specific Gravity and Density of Semi-Solid Asphalt Binder (Pycnometer Method)
(
ASTM International
,
West Conshohocken, PA
,
2021
), www.astm.org.
58.
R.
Chantrell
,
J.
Popplewell
, and
S.
Charles
, “
Measurements of particle size distribution parameters in ferrofluids
,”
IEEE Trans. Magn.
14
(
5
),
975
977
(
1978
).
59.
I.
Abu-Aljarayesh
,
A.
Al-Bayrakdar
, and
S. H.
Mahmood
, “
The effect of heating on the magnetic properties of Fe3O4 fine particles
,”
J. Magn. Magn. Mater.
123
(
3
),
267
272
(
1993
).
60.
L. H.
Nguyen
,
V. T. K.
Oanh
,
P. H.
Nam
,
D. H.
Doan
,
N. X.
Truong
,
N. X.
Ca
,
P. T.
Phong
,
L. V.
Hong
, and
T. D.
Lam
, “
Increase of magnetic hyperthermia efficiency due to optimal size of particles: Theoretical and experimental results
,”
J. Nanopart. Res.
22
(
9
),
258
(
2020
).
61.
J.
García-Otero
,
A. J.
García-Bastida
, and
J.
Rivas
, “
Influence of temperature on the coercive field of non-interacting fine magnetic particles
,”
J. Magn. Magn. Mater.
189
(
3
),
377
383
(
1998
).
62.
B. D.
Cullity
and
C. D.
Graham
,
Introduction to Magnetic Materials
(
John Wiley & Sons
,
2011
).
63.
H-y
Duan
,
J.
Wang
,
L.
Li
,
V.
Aguilar
, and
G-m
Zhao
, “
Magnetic properties of barium ferrite nanoparticles: Quantitative test of the Stoner–Wohlfarth theory for uniaxial single-domain magnetic particles
,”
Phys. Lett. A
377
(
38
),
2659
2662
(
2013
).
64.
K.
Enpuku
,
A. L.
Elrefai
,
T.
Yoshida
,
T.
Kahmann
,
J.
Zhong
,
T.
Viereck
, and
F.
Ludwig
, “
Estimation of the effective magnetic anisotropy constant of multi-core based magnetic nanoparticles from the temperature dependence of the coercive field
,”
J. Appl. Phys.
127
(
13
),
133903
(
2020
).
65.
A. S.
Poulos
,
F.
Renou
,
A. R.
Jacob
,
N.
Koumakis
, and
G.
Petekidis
, “
Large amplitude oscillatory shear (LAOS) in model colloidal suspensions and glasses: Frequency dependence
,”
Rheol. Acta
54
(
8
),
715
724
(
2015
).
66.
A. S.
Poulos
,
J.
Stellbrink
, and
G.
Petekidis
, “
Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear
,”
Rheol. Acta
52
(
8
),
785
800
(
2013
).
67.
L.
Papadopoulos
,
M. A.
Porter
,
K. E.
Daniels
, and
D. S.
Bassett
, “
Network analysis of particles and grains
,”
J. Complex Networks
6
(
4
),
485
565
(
2018
).
68.
K.
Hyun
,
J. G.
Nam
,
M.
Wilhelm
,
K. H.
Ahn
, and
S. J.
Lee
, “
Nonlinear response of complex fluids under LAOS (large amplitude oscillatory shear) flow
,”
Korea-Aust. Rheol. J.
15
(
2
),
97
105
(
2003
).
69.
D.
Zákutná
,
K.
Graef
,
D.
Dresen
,
L.
Porcar
,
D.
Honecker
, and
S.
Disch
, “
In situ magnetorheological SANS setup at Institut Laue-Langevin
,”
Colloid Polym. Sci.
299
(
2
),
281
288
(
2021
).
70.
L. M.
Pop
and
S.
Odenbach
, “
Investigation of the microscopic reason for the magnetoviscous effect in ferrofluids studied by small angle neutron scattering
,”
J. Phys: Condens. Matter
18
(
38
),
S2785
(
2006
).
71.
L. M.
Pop
,
S.
Odenbach
,
A.
Wiedenmann
,
N.
Matoussevitch
, and
H.
Bönnemann
, “
Microstructure and rheology of ferrofluids
,”
J. Magn. Magn. Mater.
289
,
303
306
(
2005
).
72.
R.
Mao
,
X.
Wang
,
S.
Cai
,
G.
Zhang
, and
J.
Wang
, “
Quantitative investigation on the nonlinear viscoelasticity of magnetorheological gel under large amplitude oscillatory shear
,”
Colloids Surf., A
655
,
130293
(
2022
).
73.
W. H.
Li
,
H.
Du
,
G.
Chen
,
S. H.
Yeo
, and
N.
Guo
, “
Nonlinear viscoelastic properties of MR fluids under large-amplitude-oscillatory-shear
,”
Rheol. Acta
42
(
3
),
280
286
(
2003
).
74.
H.
Wang
,
T.
Chang
,
Y.
Li
,
S.
Li
,
G.
Zhang
,
J.
Wang
, and
J.
Li
, “
Characterization of nonlinear viscoelasticity of magnetorheological grease under large oscillatory shear by using Fourier transform-Chebyshev analysis
,”
J. Intell. Mater. Syst. Struct.
32
(
6
),
614
631
(
2020
).
75.
P.
Kuzhir
,
A.
Gómez-Ramírez
,
M. T.
López-López
,
G.
Bossis
, and
A. Y.
Zubarev
, “
Non-linear viscoelastic response of magnetic fiber suspensions in oscillatory shear
,”
J. Non-Newtonian Fluid Mech.
166
(
7
),
373
385
(
2011
).
76.
D. R.
Gamota
,
A. S.
Wineman
, and
F. E.
Filisko
, “
Fourier transform analysis: Nonlinear dynamic response of an electrorheological material
,”
J. Rheol.
37
(
5
),
919
933
(
1993
).
77.
M.
Parthasarathy
and
D. J.
Klingenberg
, “
Large amplitude oscillatory shear of ER suspensions
,”
J. Non-Newtonian Fluid Mech.
81
(
1
),
83
104
(
1999
).
78.
A.
Monshi
,
M. R.
Foroughi
, and
M. R.
Monshi
, “
Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD
,”
World J. Nano Sci. Eng.
02
(
03
),
154
160
(
2012
).
79.
H. H.
Wickman
, “
Mössbauer paramagnetic hyperfine structure
,” in
Mössbauer Effect Methodology
, edited by
I. J.
Gruverman
(
Springer US
,
Boston, MA
,
1966
), pp.
39
66
.
80.
J.
Fock
,
L. K.
Bogart
,
D.
González-Alonso
,
J. I.
Espeso
,
M. F.
Hansen
,
M.
Varón
,
C.
Frandsen
, and
Q. A.
Pankhurst
, “
On the ‘centre of gravity’ method for measuring the composition of magnetite/maghemite mixtures, or the stoichiometry of magnetite-maghemite solid solutions, via 57Fe Mössbauer spectroscopy
,”
J. Phys. D: Appl. Phys.
50
(
26
),
265005
(
2017
).
81.
W.
Kim
,
C.-Y.
Suh
,
S.-W.
Cho
,
K.-M.
Roh
,
H.
Kwon
,
K.
Song
, and
I.-J.
Shon
, “
A new method for the identification and quantification of magnetite–maghemite mixture using conventional X-ray diffraction technique
,”
Talanta
94
,
348
352
(
2012
).
82.
J.-E.
Jørgensen
,
L.
Mosegaard
,
L. E.
Thomsen
,
T. R.
Jensen
, and
J. C.
Hanson
, “
Formation of γ-Fe2O3 nanoparticles and vacancy ordering: An in situ X-ray powder diffraction study
,”
J. Solid State Chem.
180
(
1
),
180
185
(
2007
).
83.
P.
Allia
,
M.
Coisson
,
P.
Tiberto
,
F.
Vinai
,
M.
Knobel
,
M. A.
Novak
, and
W. C.
Nunes
, “
Granular Cu–Co alloys as interacting superparamagnets
,”
Phys. Rev. B
64
(
14
),
144420
(
2001
).
84.
T.
Ozkaya
,
M. S.
Toprak
,
A.
Baykal
,
H.
Kavas
,
Y.
Köseoğlu
, and
B.
Aktaş
, “
Synthesis of Fe3O4 nanoparticles at 100 °C and its magnetic characterization
,”
J. Alloys Compd.
472
(
1
),
18
23
(
2009
).
85.
A. G.
Roca
,
J. F.
Marco
,
M. d P.
Morales
, and
C. J.
Serna
, “
Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles
,”
J. Phys. Chem. C
111
(
50
),
18577
18584
(
2007
).
86.
J.
Santoyo Salazar
,
L.
Perez
,
O.
de Abril
,
L.
Truong Phuoc
,
D.
Ihiawakrim
,
M.
Vazquez
,
J.-M.
Greneche
,
S.
Begin-Colin
, and
G.
Pourroy
, “
Magnetic iron oxide nanoparticles in 10 − 40 nm range: Composition in terms of magnetite/maghemite ratio and effect on the magnetic properties
,”
Chem. Mater.
23
(
6
),
1379
1386
(
2011
).
87.
D.
Kechrakos
and
K. N.
Trohidou
, “
Interplay of dipolar interactions and grain-size distribution in the giant magnetoresistance of granular metals
,”
Phys. Rev. B
62
(
6
),
3941
3951
(
2000
).
88.
O.
Moscoso-Londoño
,
P.
Tancredi
,
D.
Muraca
,
P.
Mendoza Zélis
,
D.
Coral
,
M. B.
Fernández van Raap
,
U.
Wolff
,
V.
Neu
,
C.
Damm
,
C. L. P.
de Oliveira
,
K. R.
Pirota
,
M.
Knobel
, and
L. M.
Socolovsky
, “
Different approaches to analyze the dipolar interaction effects on diluted and concentrated granular superparamagnetic systems
,”
J. Magn. Magn. Mater.
428
,
105
118
(
2017
).
89.
F. H.
Sánchez
,
P.
Mendoza Zélis
,
M. L.
Arciniegas
,
G. A.
Pasquevich
, and
M. B.
Fernández van Raap
, “
Dipolar interaction and demagnetizing effects in magnetic nanoparticle dispersions: Introducing the mean-field interacting superparamagnet model
,”
Phys. Rev. B
95
(
13
),
134421
(
2017
).
90.
A. P.
Safronov
,
I. V.
Beketov
,
S. V.
Komogortsev
,
G. V.
Kurlyandskaya
,
A. I.
Medvedev
,
D. V.
Leiman
,
A.
Larrañaga
, and
S. M.
Bhagat
, “
Spherical magnetic nanoparticles fabricated by laser target evaporation
,”
AIP Adv.
3
(
5
),
052135
(
2013
).
91.
D. J.
Dunlop
and
Ö.
Özdemir
, “
5.08 - Magnetizations in rocks and minerals
,” in
Treatise on Geophysics
, edited by
G.
Schubert
(
Elsevier
,
Amsterdam
,
2007
), pp.
277
336
.
92.
W. C.
Nunes
,
W. S. D.
Folly
,
J. P.
Sinnecker
, and
M. A.
Novak
, “
Temperature dependence of the coercive field in single-domain particle systems
,”
Phys. Rev. B
70
(
1
),
014419
(
2004
).
93.
See https://qd-uki.co.uk/service-support/applications-team/ for “Quantum Design Correcting for the Absolute Field Error using the Pd Standard” (2020).
94.
J. S.
Micha
,
B.
Dieny
,
J. R.
Régnard
,
J. F.
Jacquot
, and
J.
Sort
, “
Estimation of the Co nanoparticles size by magnetic measurements in Co/SiO2 discontinuous multilayers
,”
J. Magn. Magn. Mater.
272–276
,
E967
E968
(
2004
).
95.
I. J.
Bruvera
,
P.
Mendoza Zélis
,
M.
Pilar Calatayud
,
G. F.
Goya
, and
F. H.
Sánchez
, “
Determination of the blocking temperature of magnetic nanoparticles: The good, the bad, and the ugly
,”
J. Appl. Phys.
118
(
18
),
184304
(
2015
).
96.
F.
D'Orazio
,
F.
Lucari
,
M.
Melchiorri
,
C.
de Julián Fernández
,
G.
Mattei
,
P.
Mazzoldi
,
C.
Sangregorio
,
D.
Gatteschi
, and
D.
Fiorani
, “
Blocking temperature distribution in implanted Co–Ni nanoparticles obtained by magneto-optical measurements
,”
J. Magn. Magn. Mater.
262
(
1
),
111
115
(
2003
).
97.
T.
Kahmann
,
E. L.
Rösch
,
K.
Enpuku
,
T.
Yoshida
, and
F.
Ludwig
, “
Determination of the effective anisotropy constant of magnetic nanoparticles – Comparison between two approaches
,”
J. Magn. Magn. Mater.
519
,
167402
(
2021
).
98.
J.
Carrey
,
B.
Mehdaoui
, and
M.
Respaud
, “
Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization
,”
J. Appl. Phys.
109
(
8
),
083921
(
2011
).

Supplementary Material

You do not currently have access to this content.