The Oldroyd 8-constant continuum framework has yielded elegant analytical solutions for many polymer processing flows. However, continuum frameworks are silent on macromolecular structure. We can assign macromolecular meaning to the continuum constants by bridging continuum frameworks to the macromolecular theory of polymeric liquid dynamics. When the Oldroyd 8-constant framework has been bridged to rigid dumbbell theory (two-step), no higher order rheology was predicted ( ν 1 = ν 2 = 0). By higher order, we mean the nonlinear rheology. This troubled Bird (1972), motivating his modified Oldroyd 8-constant continuum framework, which does predict higher order rheology, to which meaning in rigid dumbbell theory is assigned. By two-step, we mean we get the three Jeffreys model constants from the macromolecular expression for the complex viscosity, and then solve five equations simultaneously for the five remaining constants. In this paper, in three steps, we bridge the Bird 8-constant framework to the more versatile rotarance theory (general rigid bead-rod theory). By three-step, we mean we get the three Jeffreys model constants from the macromolecular expression for the complex viscosity, and then solve three equations simultaneously for the next three, and finally solving two equation simultaneously for the remaining two higher order constants. By versatile, we mean accommodating any axisymmetric macromolecular structure (including the rigid dumbbell). We find the constants in the Bird 8-constant framework to be explicit functions of just one dimensionless macromolecular attribute: the ratio of the moment of inertia about the molecular axis, to the moment about either transverse axis. We thus assign macromolecular meaning to the higher order rheology. In passing, we also discover a new bridge to the Oldroyd 8-constant framework (three-step), which also assigns macromolecular meaning to the higher order rheology.

1.
M. C.
Pak
,
A. J.
Giacomin
, and
M. A.
Kanso
, “
Steady elongational flow from rotarance theory
,”
Phys. Fluids
35
,
103116
(
2023
).
2.
J. G.
Oldroyd
, “
Some steady flows of the general elastico-viscous liquid
,”
Proc. R. Soc. London, Ser. A
283
(
1392
),
115
133
(
1965
).
3.
J. G.
Oldroyd
, “
Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids
,”
Proc. R. Soc. London, Ser. A
245
(
1241
),
278
297
(
1958
).
4.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
Wiley
,
New York
,
1987
), Vol.
1
.
5.
A. J.
Giacomin
and
C.
Saengow
, “
Molecular continua for polymeric liquids in large-amplitude oscillatory shear flow
,”
Mod. Phys. Lett. B
32
(
12/13
),
1840036
(
2018
); Erratum: In Eq. (8), η ¯ 1 ( ε ̇ , 0 ) / η 0 should be η ¯ 1 ( ε ̇ , 0 ) / 3 η 0.
6.
J. L.
Lumley
, “
Applicability of the Oldroyd constitutive equation to flow of dilute polymer solutions
,”
Phys. Fluids
14
(
11
),
2282
2284
(
1971
).
7.
J. L.
Lumley
, “
Erratum: Applicability of the Oldroyd constitutive equation to flow of dilute polymer solutions
,”
Phys. Fluids
15
(
11
),
2081
(
1972
).
8.
R. B.
Bird
, “
A modification of the Oldroyd model for rigid dumbbell suspensions with Brownian motion
,”
J. Appl. Math. Phys.
23
(
1
),
157
159
(
1972
).
9.
R. B.
Bird
and
W. J.
Drugan
, “
An exploration and further study of an enhanced Oldroyd model
,”
Phys. Fluids
29
(
5
),
053103
(
2017
).
10.
P.
Poungthong
and
A. J.
Giacomin
, “
Bridging macromolecular theory of polymeric liquids to Oldroyd 8-constant constitutive framework
,”
Phys. Fluids
35
(
11
),
111705
(
2023
); Errata: In Eqs. (4) and (5), nkT λ should be η 0. Eq. (58) of (Ref. 42) corrects Eq. (13).
11.
A. J.
Giacomin
and
C.
Saengow
, “
Ongoing relevance of Oldroyd 8-constant fluids
,”
J. Non-Newtonian Fluid Mech.
299
,
104653
(
2022
).
12.
J. G.
Oldroyd
, “
The elastic and viscous properties of emulsions and suspensions
,”
Proc. R. Soc. London, Ser. A
218
(
1132
),
122
132
(
1953
).
13.
J. G.
Oldroyd
, “
The effect of interfacial stabilizing films on the elastic and viscous properties of emulsions
,”
Proc. R. Soc. London, Ser. A
232
(
1191
),
567
577
(
1955
).
14.
P.
Poungthong
,
A. J.
Giacomin
, and
C.
Saengow
, “
Planar extensional viscosity from Oldroyd 8-constant framework
,”
Phys. Fluids
36
(
1
),
017130
(
2024
).
15.
R. B.
Bird
,
O.
Hassager
,
R. C.
Armstrong
, and
C. F.
Curtiss
,
Dynamics of Polymeric Liquids
, 1st ed. (
Wiley
,
New York
,
1977
), Vol.
2
.
16.
R. B.
Bird
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
Wiley
,
New York
,
1987
), Vol.
2
.
17.
M. A.
Kanso
, “
Coronavirus hydrodynamics
,” Ph.D. thesis (
Polymers Research Group, Chemical Engineering Department, Queen's University
,
Kingston, Canada
,
2022
).
18.
M. A.
Kanso
,
A. J.
Giacomin
,
C.
Saengow
, and
J. H.
Piette
, “
Macromolecular architecture and complex viscosity
,”
Phys. Fluids
31
(
8
),
087107
(
2019
). Errata: Ganged in Ref. 8 of Ref. 44 above. In the caption to Fig. 1. “(rightmost)” should be “(leftmost)” and “(leftmost)” should be “(rightmost).”
19.
K.
El Haddad
,
C.
Aumnate
,
C.
Saengow
,
M. A.
Kanso
,
S. J.
Coombs
, and
A. J.
Giacomin
, “
Complex viscosity of graphene suspensions
,”
Phys. Fluids
33
(
9
),
093109
(
2021
); Special Collection: Celebration of Robert Byron Bird (1924–2020).
20.
V.
Chaurasia
,
M. A.
Kanso
,
E.
Fried
, and
A. J.
Giacomin
, “
Coronavirus peplomer charge heterogeneity
,”
Phys. Fluids
35
,
037125
(
2023
).
21.
M. A.
Kanso
,
V.
Calabrese
,
A. Q.
Shen
,
M. C.
Pak
, and
A. J.
Giacomin
, “
Bacteriophage Pf1 complex viscosity
,”
Phys. Fluids
35
(
7
),
073107
(
2023
).
22.
M. C.
Pak
,
R.
Chakraborty
,
M. A.
Kanso
,
K.
Tontiwattanakul
,
K.-I.
Kim
, and
A. J.
Giacomin
, “
Coronavirus peplomer interaction
,”
Phys. Fluids
34
(
11
),
113109
(
2022
).
23.
M. A.
Kanso
,
M.
Naime
,
V.
Chaurasia
,
K.
Tontiwattanakul
,
E.
Fried
, and
A. J.
Giacomin
, “
Coronavirus pleomorphism
,”
Phys. Fluids
34
(
6
),
063101
(
2022
).
24.
M. A.
Kanso
,
J. H.
Piette
,
J. A.
Hanna
, and
A. J.
Giacomin
, “
Coronavirus rotational diffusivity
,”
Phys. Fluids
32
(
11
),
113101
(
2020
).
25.
M. C.
Pak
,
K.-I.
Kim
,
M. A.
Kanso
, and
A. J.
Giacomin
, “
General rigid bead-rod theory with hydrodynamic interaction for polymer viscoelasticity
,”
Phys. Fluids
34
(
2
),
023106
(
2022
).
26.
M. A.
Kanso
,
M. C.
Pak
,
K.-I.
Kim
,
S. J.
Coombs
, and
A. J.
Giacomin
, “
Hydrodynamic interaction and complex viscosity of multi-bead rods
,”
Phys. Fluids
34
(
4
),
043102
(
2022
).
27.
R.
Chakraborty
,
D.
Singhal
,
M. A.
Kanso
, and
A. J.
Giacomin
, “
Macromolecular complex viscosity from space-filling equilibrium structure
,”
Phys. Fluids
34
(
9
),
093109
(
2022
).
28.
M. C.
Pak
,
R.
Chakraborty
,
M. A.
Kanso
,
K.-I.
Kim
, and
A. J.
Giacomin
, “
Hydrodynamic interaction within star-branched macromolecules
,”
Phys. Fluids
34
(
9
),
093114
(
2022
); Erratum: After Eq. (9), “ 3.36 × 10 4” should be “ 3.36 × 10 4.”
29.
S. J.
Coombs
,
M. A.
Kanso
,
K. El
Haddad
, and
A. J.
Giacomin
, “
Complex viscosity of star-branched macromolecules from analytical general rigid bead-rod theory
,”
Phys. Fluids
33
(
9
),
093111
(
2021
); Special Collection: Celebration of Robert Byron Bird (1924–2020). Errata: In the captions to Figs. 6–7, 14–17, and 20–22, “ / η 0 λ ω” should be “ λ ω / η 0”; In the captions to Figs. 8–9, the equations for θ 1 should be θ 1 = 1 2 π Θ t; In Table III, “Bead position for irregular tetrahedral, spherical coordinates” should be “Branch angle, first branch”; “ N B N B + 1 2 N B + 1” must be multiplied by “ 1 6” throughout.
30.
S. J.
Coombs
,
M. A.
Kanso
, and
A. J.
Giacomin
, “
Cole-Cole relation for long-chain branching from general rigid bead-rod theory
,”
Phys. Fluids
32
(
9
),
093106
(
2020
).
31.
M. A.
Kanso
,
A. J.
Giacomin
, and
C.
Saengow
, “
Large-amplitude oscillatory shear flow loops for long-chain branching from general rigid bead-rod theory
,”
Phys. Fluids
32
(
5
),
053102
(
2020
).
32.
M. A.
Kanso
and
A. J.
Giacomin
, “
van Gurp-Palmen relations for long-chain branching from general rigid bead-rod theory
,”
Phys. Fluids
32
(
3
),
033101
(
2020
); Erratum: In Eq. (44), “ I 3 > I 1” should be “ I 3 < I 1”.
33.
M. A.
Kanso
and
A. J.
Giacomin
, “
Polymer branching and first normal stress differences in small-amplitude oscillatory shear flow
,” Established Leaders Chem. Eng. Spec. Ser.,
Can. J. Chem. Eng.
98
(
7
),
1444
1455
(
2020
); Erratum: In Eq. (24), “ Ψ ” should be “ Ψ 1 ”.
34.
M. A.
Kanso
,
M. C.
Pak
,
R.
Chakraborty
,
K.-I.
Kim
, and
A. J.
Giacomin
, “
Hydrodynamic interaction within canonical macromolecular structures
,”
Phys. Fluids
34
(
8
),
083109
(
2022
).
35.
J. H.
Piette
,
A. J.
Giacomin
, and
M. A.
Kanso
, “
Complex viscosity of helical and doubly helical polymeric liquids from general rigid bead-rod theory
,”
Phys. Fluids
31
(
11
),
111904
(
2019
). Errata: In the captions to Figs. 10 and 12, “prolate” should be “oblate.” Right side of Eq. (4) should be r i 1 , r i 2 , r i 3 R. Before Eq. (35), “Eq. (40) of Ref. 7” should be “Eq. (44) of Ref. 7.”
36.
D.
Singhal
,
M. A.
Kanso
,
S. J.
Coombs
, and
A. J.
Giacomin
, “
Complex viscosity of poly[n]catenanes including olympiadanes
,”
Phys. Fluids
34
(
3
),
033112
(
2022
).
37.
J. H.
Piette
,
N.
Moreno
,
E.
Fried
, and
A. J.
Giacomin
, “
The complex viscosity of Möbius macromolecules
,”
Phys. Fluids
32
(
9
),
093107
(
2020
).
38.
M. A.
Kanso
,
A. J.
Giacomin
,
C.
Saengow
, and
J. H.
Piette
, “
Diblock copolymer architecture and complex viscosity
,”
Int. J. Mod. Phys. B
34
,
2040110
(
2020
).
39.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 1st ed. (
Wiley
,
New York
,
1977
), Vol.
1
.
40.
P.
Poungthong
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Series expansion for normal stress differences in large-amplitude oscillatory shear flow from Oldroyd 8-constant framework
,”
Phys. Fluids
32
,
023107
(
2020
).
41.
P.
Poungthong
,
A. J.
Giacomin
,
C.
Saengow
, and
C.
Kolitawong
, “
Series expansion for shear stress in large-amplitude oscillatory shear flow from Oldroyd 8-constant framework
,”
Can. J. Chem. Eng.
97
,
1655
1675
(
2019
).
42.
A. J.
Giacomin
,
S. J.
Coombs
,
M. C.
Pak
, and
K.-I.
Kim
, “
General rigid bead-rod theory for steady-shear flow
,”
Phys. Fluids
35
(
8
),
083111
(
2023
).
43.
R. B.
Bird
,
H. R.
Warner
, Jr.
, and
D. C.
Evans
, “
Kinetic theory and rheology of dumbbell suspensions with Brownian motion
,”
Adv. Polym. Sci.
8
,
1
90
(
1971
).
44.
M. A.
Kanso
,
V.
Chaurasia
,
E.
Fried
, and
A. J.
Giacomin
, “
Peplomer bulb shape and coronavirus rotational diffusivity
,”
Phys. Fluids
33
(
3
),
033115
(
2021
).
You do not currently have access to this content.