Mucus on the human airway surface normally provides a fluid barrier to trap and remove inhaled hazardous particulates such as viruses and bacteria, a physiological function known as mucus clearance. This function, however, can fail if the mucus has abnormal rheological properties, as in the case of certain lung diseases such as asthma. Despite its importance, airway mucus rheology has not been well studied so far, largely because of its complex nature and limited availability. Therefore, in this study, we prepared mucin-based protein solutions as simulated normal and asthmatic airway mucus (NM and AM, respectively) and subsequently studied them in both linear and nonlinear rheological conditions using either conventional steady-state or large amplitude oscillatory shear experiments together with nonlinear multi-mode Giesekus model analysis. We also examined the microscopic structure of the simulated airway mucus by optical or atomic force microscopy. We found that both NM and AM exhibited typical nonlinear rheological behaviors of protein solutions. However, as compared to NM, AM was much more solid-like, and the viscosity, yield stress, and dynamic modulus were more than ten times that of NM. These differences in macroscopic rheological behaviors between NM and AM could be attributed to their different microstructures. Taken together, this study provides evidence that airway mucus may dramatically change its rheological behaviors with changing chemical composition and microstructure as occurring in diseased conditions such as AM. Thus, the presented rheological assessment and modeling analysis, together with the microscopic characterization of simulated airway mucus, may have important values for better understanding the critical roles of mucus rheology in the determination of the mucus clearance function in health and disease as well as the development of pulmonary drug delivery systems.

1.
J. V.
Fahy
and
B. F.
Dickey
, “
Airway mucus function and dysfunction
,”
N. Engl. J. Med.
363
,
2233
2247
(
2010
).
2.
O. W.
Williams
,
A.
Sharafkhaneh
,
V.
Kim
,
B. F.
Dickey
, and
C. M.
Evans
, “
Airway mucus: From production to secretion
,”
Am. J. Respir. Cell Mol. Biol.
34
,
527
(
2006
).
3.
C. M.
Evans
and
J. S.
Koo
, “
Airway mucus: The good, the bad, the sticky
,”
Pharmacol. Ther.
121
,
332
348
(
2009
).
4.
B.
Button
,
L.-H.
Cai
,
C.
Ehre
,
M.
Kesimer
,
D. B.
Hill
,
J. K.
Sheehan
,
R. C.
Boucher
, and
M.
Rubinstein
, “
A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia
,”
Science
337
,
937
941
(
2012
).
5.
M.
Shan
,
M.
Gentile
,
J. R.
Yeiser
,
A. C.
Walland
,
V. U.
Bornstein
,
K.
Chen
,
B.
He
,
L.
Cassis
,
A.
Bigas
, and
M.
Cols
, “
Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals
,”
Science
342
,
447
453
(
2013
).
6.
R. A.
Cone
, “
Barrier properties of mucus
,”
Adv. Drug Deliver. Rev.
61
,
75
85
(
2009
).
7.
B. K.
Rubin
, “
Secretion properties, clearance, and therapy in airway disease
,”
Trans. Respir Med.
2
,
6
(
2014
).
8.
M.
Singer
,
L. D.
Martin
,
B. B.
Vargaftig
,
J.
Park
,
A. D.
Gruber
,
Y.
Li
, and
K. B.
Adler
, “
A MARCKS-related peptide blocks mucus hypersecretion in a mouse model of asthma
,”
Nat. Med.
10
,
193
196
(
2004
).
9.
S. K.
Lai
,
Y.-Y.
Wang
,
D.
Wirtz
, and
J.
Hanes
, “
Micro-and macrorheology of mucus
,”
Adv. Drug Deliver. Rev.
61
,
86
100
(
2009
).
10.
J. B.
Grotberg
, “
Respiratory fluid mechanics
,”
Phys. Fluids
23
,
021301
(
2011
).
11.
D. T.
Le
,
T. L.
Tran
,
M. P.
Duviau
,
M.
Meyrand
,
Y.
Guerardel
,
M.
Castelain
,
P.
Loubiere
,
M. P.
Chapot-Chartier
,
E.
Dague
, and
M.
Mercier-Bonin
, “
Unraveling the role of surface mucus-binding protein and pili in muco-adhesion of Lactococcus lactis
,”
PLoS One
8
,
e79850
(
2013
).
12.
J. A.
Voynow
and
B. K.
Rubin
, “
Mucins, mucus, and sputum
,”
Chest J.
135
,
505
512
(
2009
).
13.
G.
Tomaiuolo
,
G.
Rusciano
,
S.
Caserta
,
A.
Carciati
,
V.
Carnovale
,
P.
Abete
,
A.
Sasso
, and
S.
Guido
, “
A new method to improve the clinical evaluation of cystic fibrosis patients by mucus viscoelastic properties
,”
PLoS One
9
,
e82297
(
2014
).
14.
M. G.
Roy
,
A.
Livraghi-Butrico
,
A. A.
Fletcher
,
M. M.
McElwee
,
S. E.
Evans
,
R. M.
Boerner
,
S. N.
Alexander
,
L. K.
Bellinghausen
,
A. S.
Song
, and
Y. M.
Petrova
, “
Muc5b is required for airway defence
,”
Nature
505
,
412
416
(
2014
).
15.
M. R.
Elkins
,
M.
Robinson
,
B. R.
Rose
,
C.
Harbour
,
C. P.
Moriarty
,
G. B.
Marks
,
E. G.
Belousova
,
W.
Xuan
, and
P. T.
Bye
, “
A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis
,”
N. Engl. J. Med.
354
,
229
240
(
2006
).
16.
E.
Daviskas
and
B. K.
Rubin
, “
Effect of inhaled dry powder mannitol on mucus and its clearance
,”
Expert Rev. Respir. Med.
7
,
65
75
(
2013
).
17.
S. K.
Lai
,
Y.-Y.
Wang
, and
J.
Hanes
, “
Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues
,”
Adv. Drug Deliver. Rev.
61
,
158
171
(
2009
).
18.
L. M.
Kuyper
,
P. D.
Paré
,
J. C.
Hogg
,
R. K.
Lambert
,
D.
Ionescu
,
R.
Woods
, and
T. R.
Bai
, “
Characterization of airway plugging in fatal asthma
,”
Am. J. Med.
115
,
6
11
(
2003
).
19.
E. S.
Vasquez
,
J.
Bowser
,
C.
Swiderski
,
K. B.
Walters
, and
S.
Kundu
, “
Rheological characterization of mammalian lung mucus
,”
RSC Adv.
4
,
34780
34783
(
2014
).
20.
J.
Kirch
,
A.
Schneider
,
B.
Abou
,
A.
Hopf
,
U. F.
Schaefer
,
M.
Schneider
,
C.
Schall
,
C.
Wagner
, and
C. M.
Lehr
, “
Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
18355
18360
(
2012
).
21.
J. S.
Crater
and
R. L.
Carrier
, “
Barrier properties of gastrointestinal mucus to nanoparticle transport
,”
Macromol. Biosci.
10
,
1473
1483
(
2010
).
22.
L. R.
Shaw
,
W. J.
Irwin
,
T. J.
Grattan
, and
B. R.
Conway
, “
The influence of excipients on the diffusion of ibuprofen and paracetamol in gastric mucus
,”
Int. J. Pharm.
290
,
145
154
(
2005
).
23.
J. S.
Suk
,
S. K.
Lai
,
Y.-Y.
Wang
,
L. M.
Ensign
,
P. L.
Zeitlin
,
M. P.
Boyle
, and
J.
Hanes
, “
The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles
,”
Biomaterials
30
,
2591
2597
(
2009
).
24.
B. C.
Tang
,
M.
Dawson
,
S. K.
Lai
,
Y.-Y.
Wang
,
J. S.
Suk
,
M.
Yang
,
P.
Zeitlin
,
M. P.
Boyle
,
J.
Fu
, and
J.
Hanes
, “
Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
19268
19273
(
2009
).
25.
J. M.
Holmén
,
N. G.
Karlsson
,
L. H.
Abdullah
,
S. H.
Randell
,
J. K.
Sheehan
,
G. C.
Hansson
, and
C. W.
Davis
, “
Mucins and their o-glycans from human bronchial epithelial cell cultures
,”
Am. J. Physiol.: Lung Cell. Mol. Physiol.
287
,
L824
L834
(
2004
).
26.
M.
Kesimer
,
S.
Kirkham
,
R. J.
Pickles
,
A. G.
Henderson
,
N. E.
Alexis
,
G.
DeMaria
,
D.
Knight
,
D. J.
Thornton
, and
J. K.
Sheehan
, “
Tracheobronchial air-liquid interface cell culture: A model for innate mucosal defense of the upper airways?
,”
Am. J. Physiol.: Lung Cell. Mol. Physiol.
296
,
L92
L100
(
2009
).
27.
P. A.
Vasquez
,
Y.
Jin
,
E.
Palmer
,
D.
Hill
, and
M. G.
Forest
, “
Modeling and simulation of mucus flow in human bronchial epithelial cell cultures—Part I: Idealized axisymmetric swirling flow
,”
PLoS Comput. Biol.
12
,
e1004872
(
2016
).
28.
K.
Hyun
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
29.
A. J.
Giacomin
,
P. H.
Gilbert
,
D.
Merger
, and
M.
Wilhelm
, “
Large-amplitude oscillatory shear: Comparing parallel-disk with cone-plate flow
,”
Rheol. Acta
54
,
263
285
(
2015
).
30.
C.
Saengow
and
A. J.
Giacomin
, “
Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow
,”
Phys. Fluids
29
,
121601
(
2017
).
31.
P.
Poungthong
,
A. J.
Giacomin
,
C.
Saengow
, and
C.
Kolitawong
, “
Power series for normal stress differences of polymeric liquids in large-amplitude oscillatory shear flow
,”
Phys. Fluids
31
,
033101
(
2019
).
32.
C.
Saengow
and
A. J.
Giacomin
, “
Review of nonlinear oscillatory shear flow notations and presentations: Polymeric liquids
,”
Curr. Opin. Colloid Interface Sci.
43
,
26
38
(
2019
).
33.
A. J.
Giacomin
,
R. B.
Bird
,
L. M.
Johnson
, and
A. W.
Mix
, “
Large-amplitude oscillatory shear flow from the corotational maxwell model
,”
J. Non-Newtonian Fluid Mech.
166
,
1081
1099
(
2011
).
34.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Exact analytical solution for large-amplitude oscillatory shear flow from Oldroyd 8-constant framework: Shear stress
,”
Phys. Fluids
29
,
043101
(
2017
).
35.
P.
Poungthong
,
C.
Saengow
,
A. J.
Giacomin
,
C.
Kolitawong
,
D.
Merger
, and
M.
Wilhelm
, “
Pade approximant for normal stress differences in large-amplitude oscillatory shear flow
,”
Phys. Fluids
30
,
040910
(
2018
).
36.
C.
Saengow
and
A. J.
Giacomin
, “
Exact solutions for oscillatory shear sweep behaviors of complex fluids from the Oldroyd 8-constant framework
,”
Phys. Fluids
30
,
030703
(
2018
).
37.
K.
Yang
,
Z.
Liu
,
J.
Wang
, and
W.
Yu
, “
Stress bifurcation in large amplitude oscillatory shear of yield stress fluids
,”
J. Rheol.
62
,
89
106
(
2018
).
38.
Z.
Liu
,
K.
Yang
, and
W.
Yu
, “
Linear and nonlinear rheology of oil in liquid crystal emulsions
,”
Rheol. Acta
59
,
783
795
(
2020
).
39.
Z.
Liu
,
Z.
Xiong
,
Z.
Nie
, and
W.
Yu
, “
Correlation between linear and nonlinear material functions under large amplitude oscillatory shear
,”
Phys. Fluids
32
,
093105
(
2020
).
40.
M.
Jory
,
D.
Donnarumma
,
C.
Blanc
,
K.
Bellouma
,
A.
Fort
,
I.
Vachier
,
L.
Casanellas
,
A.
Bourdin
, and
G.
Massiera
, “
Mucus from human bronchial epithelial cultures: Rheology and adhesion across length scales
,”
Interface Focus
12
,
20220028
(
2022
).
41.
A.
Hess
and
N.
Aksel
, “
Yielding and structural relaxation in soft materials: Evaluation of strain-rate frequency superposition data by the stress decomposition method
,”
Phys. Rev. E
84
,
051502
(
2011
).
42.
Y.
Hu
,
F.
Romanò
, and
J. B.
Grotberg
, “
Effects of surface tension and yield stress on mucus plug rupture: A numerical study
,”
J. Biomech. Eng.
142
,
061007
(
2020
).
43.
R. H.
Ewoldt
,
C.
Clasen
,
A.
Hosoi
, and
G. H.
McKinley
, “
Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion
,”
Soft Matter
3
,
634
643
(
2007
).
44.
K.
Yang
and
W.
Yu
, “
Dynamic wall slip behavior of yield stress fluids under large amplitude oscillatory shear
,”
J. Rheol.
61
,
627
641
(
2017
).
45.
A. L.
Innes
,
S. D.
Carrington
,
D. J.
Thornton
,
S.
Kirkham
,
K.
Rousseau
,
R. H.
Dougherty
,
W. W.
Raymond
,
G. H.
Caughey
,
S. J.
Muller
, and
J. V.
Fahy
, “
Ex vivo sputum analysis reveals impairment of protease-dependent mucus degradation by plasma proteins in acute asthma
,”
Am. J. Respir. Crit. Care Med.
180
,
203
(
2009
).
46.
D. J.
Thornton
and
J. K.
Sheehan
, “
From mucins to mucus: Toward a more coherent understanding of this essential barrier
,”
Proc. Am. Thorac. Soc.
1
,
54
61
(
2004
).
47.
S. R.
Hays
and
J. V.
Fahy
, “
The role of mucus in fatal asthma
,”
Am. J. Med.
115
,
68
69
(
2003
).
48.
R.
Bej
and
R.
Haag
, “
Mucus-inspired dynamic hydrogels: Synthesis and future perspectives
,”
J. Am. Chem. Soc.
144
,
20137
20152
(
2022
).
49.
M.
Kretschmer
,
R.
Diez
,
C.
Butnarasu
,
V.
Silveira
,
I.
Dobryden
,
S.
Visentin
,
P.
Berglund
,
A.
Sönnerborg
,
O.
Lieleg
,
T.
Crouzier
, and
H.
Yan
, “
Synthetic mucin gels with self-healing properties augment lubricity and inhibit HIV-1 and HSV-2 transmission
,”
Adv. Sci.
9
,
2203898
(
2022
).
50.
C. E.
Wagner
,
M.
Krupkin
,
K. B.
Smith-Dupont
,
C. M.
Wu
,
N. A.
Bustos
,
J.
Witten
, and
K.
Ribbeck
, “
Comparison of physicochemical properties of native mucus and reconstituted mucin gels
,”
Biomacromolecules
24
,
628
639
(
2023
).
51.
M.
Dawson
,
E.
Krauland
,
D.
Wirtz
, and
J.
Hanes
, “
Transport of polymeric nanoparticle gene carriers in gastric mucus
,”
Biotechnol. Prog.
20
,
851
857
(
2004
).
52.
S. L.
McGill
and
H. D. C.
Smyth
, “
Disruption of the mucus barrier by topically applied exogenous particles
,”
Mol. Pharm.
7
,
2280
2288
(
2010
).
53.
B. S.
Schuster
,
J. S.
Suk
,
G. F.
Woodworth
, and
J.
Hanes
, “
Nanoparticle diffusion in respiratory mucus from humans without lung disease
,”
Biomaterials
34
,
3439
3446
(
2013
).
54.
Z.
Hong
,
B.
Chasan
,
R.
Bansil
,
B. S.
Turner
,
K. R.
Bhaskar
, and
N. H.
Afdhal
, “
Atomic force microscopy reveals aggregation of gastric mucin at low pH
,”
Biomacromolecules
6
,
3458
3466
(
2005
).
55.
A. N.
Round
,
N. M.
Rigby
,
A.
Garcia de la Torre
,
A.
Macierzanka
,
E. N.
Mills
, and
A. R.
Mackie
, “
Lamellar structures of MUC2-rich mucin: A potential role in governing the barrier and lubricating functions of intestinal mucus
,”
Biomacromolecules
13
,
3253
3261
(
2012
).
56.
R.
Bansil
,
J. P.
Celli
,
J. M.
Hardcastle
, and
B. S.
Turner
, “
The influence of mucus microstructure and rheology in helicobacter pylori infection
,”
Front. Immunol.
4
,
310
(
2013
).
57.
N. N.
Sanders
,
S. C.
De Smedt
,
E.
Van Rompaey
,
P.
Simoens
,
F.
De Baets
, and
J.
Demeester
, “
Cystic fibrosis sputum: A barrier to the transport of nanospheres
,”
Am. J. Respir. Crit. Care Med
162
,
1905
1911
(
2000
).
58.
M.
Kamkar
,
M.
Janmaleki
,
E.
Erfanian
,
A.
Sanati-Nezhad
, and
U.
Sundararaj
, “
Viscoelastic behavior of covalently crosslinked hydrogels under large shear deformations: An approach to eliminate wall slip
,”
Phys. Fluids
33
,
041702
(
2021
).
59.
J. P.
Celli
,
B. S.
Turner
,
N. H.
Afdhal
,
R. H.
Ewoldt
,
G. H.
McKinley
,
R.
Bansil
, and
S.
Erramilli
, “
Rheology of gastric mucin exhibits a pH-dependent sol-gel transition
,”
Biomacromolecules
8
,
1580
1586
(
2007
).
60.
Z.
Liu
,
L.
Liu
,
H.
Zhou
,
J.
Wang
, and
L.
Deng
, “
Toothpaste microstructure and rheological behaviors including aging and partial rejuvenation
,”
Korea-Aust. Rheol. J.
27
,
207
212
(
2015
).
61.
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
, and
K.
Hyun
, “
First normal stress difference of entangled polymer solutions in large amplitude oscillatory shear flow
,”
J. Rheol.
54
,
1243
1266
(
2010
).
62.
M. H.
Sedaghat
,
U. Z.
George
, and
O.
Abouali
, “
A nonlinear viscoelastic model of mucociliary clearance
,”
Rheol. Acta
60
,
371
384
(
2021
).
63.
S. M.
Mitran
, “
Metachronal wave formation in a model of pulmonary cilia
,”
Comput. Struct.
85
,
763
774
(
2007
).
64.
A. K.
Gurnon
and
N. J.
Wagner
, “
Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles
,”
J. Rheol.
56
,
333
351
(
2012
).
65.
H. H.
Sigurdsson
,
J.
Kirch
, and
C. M.
Lehr
, “
Mucus as a barrier to lipophilic drugs
,”
Int. J. Pharm.
453
,
56
64
(
2013
).
66.
D. J.
Thornton
,
K.
Rousseau
, and
M. A.
McGuckin
, “
Structure and function of the polymeric mucins in airways mucus
,”
Annu. Rev. Physiol.
70
,
459
486
(
2008
).
67.
S. K.
Lai
,
D. E.
O'Hanlon
,
S.
Harrold
,
S. T.
Man
,
Y.-Y.
Wang
,
R.
Cone
, and
J.
Hanes
, “
Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
1482
1487
(
2007
).
68.
A.-C.
Groo
and
F.
Lagarce
, “
Mucus models to evaluate nanomedicines for diffusion
,”
Drug Discov. Today
19
,
1097
1108
(
2014
).
69.
R. H.
Ewoldt
,
A.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
,
1427
1458
(
2008
).
70.
V. A.
Delgado-Reyes
,
E. G.
Ramos-Ramírez
,
A.
Cruz-Orea
, and
J. A.
Salazar-Montoya
, “
Flow and dynamic viscoelastic characterization of non-purified and purified mucin dispersions
,”
Int. J. Polym. Anal. Charact.
18
,
232
245
(
2013
).
71.
C. P.
Broedersz
,
K. E.
Kasza
,
L. M.
Jawerth
,
S.
Münster
,
D. A.
Weitz
, and
F. C.
MacKintosh
, “
Measurement of nonlinear rheology of cross-linked biopolymer gels
,”
Soft Matter
6
,
4120
4127
(
2010
).
72.
H.
Yi
,
Q.
Wang
, and
Y.
Feng
, “
Computational analysis of obstructive disease and cough intensity effects on the mucus transport and clearance in an idealized upper airway model using the volume of fluid method
,”
Phys. Fluids
33
,
021903
(
2021
).
73.
S. J.
Kim
,
H. N.
Kim
,
S. J.
Lee
, and
H. J.
Sung
, “
A lubricant-infused slip surface for drag reduction
,”
Phys. Fluids
32
,
091901
(
2020
).
74.
E.
Lauga
and
A. E.
Hosoi
, “
Tuning gastropod locomotion: Modeling the influence of mucus rheology on the cost of crawling
,”
Phys. Fluids
18
,
113102
(
2006
).
75.
T. D.
Montenegro-Johnson
,
D. J.
Smith
, and
D.
Loghin
, “
Physics of rheologically enhanced propulsion: Different strokes in generalized stokes
,”
Phys. Fluids
25
,
081903
(
2013
).
76.
S.
Ren
,
M.
Cai
,
Y.
Shi
,
Z.
Luo
, and
T.
Wang
, “
Influence of cough airflow characteristics on respiratory mucus clearance
,”
Phys. Fluids
34
,
041911
(
2022
).
77.
T. M.
Tran
,
S.
Huh
,
S.
Kim
,
X.
Cui
, and
S.
Choi
, “
Numerical investigation of the effect of tracheostomy on flow and particle transport characteristics in human airways
,”
Phys. Fluids
34
,
121901
(
2022
).
78.
S. M.
Vanaki
,
D.
Holmes
,
S. C.
Saha
,
J. J.
Chen
,
R. J.
Brown
, and
P. G.
Jayathilake
, “
Muco-ciliary clearance: A review of modelling techniques
,”
J. Biomech.
99
,
109578
(
2020
).
79.
L.
Deng
,
X.
Trepat
,
J. P.
Butler
,
E.
Millet
,
K. G.
Morgan
,
D. A.
Weitz
, and
J. J.
Fredberg
, “
Fast and slow dynamics of the cytoskeleton
,”
Nat. Mater.
5
,
636
640
(
2006
).
80.
R.
Hamed
and
J.
Fiegel
, “
Synthetic tracheal mucus with native rheological and surface tension properties
,”
J. Biomed. Mater. Res.
102
,
1788
1798
(
2014
).
81.
S. A.
Rogers
, “
A sequence of physical processes determined and quantified in LAOS: An instantaneous local 2d/3d approach
,”
J. Rheol.
56
,
1129
1151
(
2012
).
82.
M. J.
Armstrong
,
A. N.
Beris
,
S. A.
Rogers
, and
N. J.
Wagner
, “
Dynamic shear rheology of a thixotropic suspension: Comparison of an improved structure-based model with large amplitude oscillatory shear experiments
,”
J. Rheol.
60
,
433
450
(
2016
).
83.
J. D.
Park
and
S. A.
Rogers
, “
Rheological manifestation of microstructural change of colloidal gel under oscillatory shear flow
,”
Phys. Fluids
32
,
063102
(
2020
).
You do not currently have access to this content.