Precise manipulation of line morphologies is crucial for optimizing the performance of inkjet printing. Among various techniques, the utilization of heated substrates as an active control approach stands out due to its good controllability and precision. Thus, this study experimentally investigated the characteristics of inkjet-printed lines with high-temperature substrate, employing high-concentration indium tin oxide nano-ink. The phase diagrams of line patterns were plotted in the space of dimensionless droplet spacing and printing velocity. The transition boundaries between different line modes were obtained in the cases of different substrate temperatures. Two theoretical models have been developed. First, a new printing stability model was developed, which works well for high-temperature substrates. Second, for the newly observed overlapping deposition line pattern on higher temperature substrates, a theoretical model was developed to predict the pattern transition boundaries based on the timescale of droplet interval and evaporation time of each droplet. The findings could be useful for the inkjet printing optimization by means of substrate heating techniques.

1.
F. D. M.
Fernandez
,
M.
Bissannagari
, and
J.
Kim
, “
Fully inkjet-printed BaTiO3 capacitive humidity sensor: Microstructural engineering of the humidity sensing layer using bimodal ink
,”
Ceram. Int.
47
,
24693
24698
(
2021
).
2.
M. A. U.
Khalid
,
K. H.
Kim
,
A. R.
Chethikkattuveli Salih
,
K.
Hyun
,
S. H.
Park
,
B.
Kang
,
A. M.
Soomro
,
M.
Ali
,
Y.
Jun
,
D.
Huh
,
H.
Cho
, and
K. H.
Choi
, “
High performance inkjet printed embedded electrochemical sensors for monitoring hypoxia in a gut bilayer microfluidic chip
,”
Lab Chip
22
,
1764
1778
(
2022
).
3.
Z.
Cui
,
Y.
Han
,
Q.
Huang
,
J.
Dong
, and
Y.
Zhu
, “
Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics
,”
Nanoscale
10
,
6806
6811
(
2018
).
4.
W.
Zhang
,
L.
Zhang
,
Y.
Ling
, and
H.
Cheng
, “
Conformal manufacturing of soft deformable sensors on the curved surface
,”
Int. J. Extrem. Manuf.
3
,
042001
(
2021
).
5.
V.
Vespini
,
S.
Coppola
,
M.
Todino
,
M.
Paturzo
,
V.
Bianco
,
S.
Grilli
, and
P.
Ferraro
, “
Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices
,”
Lab Chip
16
,
326
333
(
2016
).
6.
F.
Mathies
,
H.
Eggers
,
B. S.
Richards
,
G.
Hernandez-Sosa
,
U.
Lemmer
, and
U. W.
Paetzold
, “
Inkjet-printed triple cation perovskite solar cells
,”
ACS Appl. Energy Mater.
1
,
1834
1839
(
2018
).
7.
K.
Cho
,
T.
Lee
, and
S.
Chung
, “
Inkjet printing of two-dimensional van der Waals materials: A new route towards emerging electronic device applications
,”
Nanoscale Horiz.
7
,
1161
1176
(
2022
).
8.
M.
Yan
,
Y.
Zhang
,
J.
Zhu
,
H.
Zang
,
Z.
Ding
,
X.
Zhao
, and
R.
Li
, “
Printing of liquid metal by laser-induced thermal bubble at the liquid–liquid interface
,”
Phys. Fluids
35
,
123346
(
2023
).
9.
M.
Zhang
,
J.
Zhu
,
Z.
Tao
, and
L.
Qiu
, “
Breakup of rectangular liquid jets with controlled upstream disturbances
,”
Int. J. Multiphase Flow
139
,
103621
(
2021
).
10.
Q.
Wang
,
Y.
Liao
,
Y.
Ho
,
K.
Wang
,
W.
Jin
,
Y.
Guan
, and
W.
Fu
, “
A study on cell viability based on thermal inkjet three-dimensional bioprinting
,”
Phys. Fluids
35
,
082007
(
2023
).
11.
J.
Huang
,
L.
Qi
,
J.
Luo
, and
Q.
Wang
, “
A study on the solidification shapes of molten metal droplet impacting at low Weber number
,”
Phys. Fluids
35
,
092102
(
2023
).
12.
J.
Zheng
,
J.
Li
,
F.
Tao
,
L.
Zhang
,
Y.
Huang
,
S.
Wang
, and
G.
Chen
, “
Drop impacting on a single layer of particles: Evolution of ring without particles
,”
Phys. Fluids
31
,
047107
(
2019
).
13.
A.
Pal
,
A.
Gope
, and
A.
Sengupta
, “
Drying of bio-colloidal sessile droplets: Advances and applications and perspectives
,”
Adv. Colloid Interface Sci.
314
,
102870
(
2023
).
14.
K.
Liang
,
D.
Li
,
H.
Ren
,
M.
Zhao
,
H.
Wang
,
M.
Ding
,
G.
Xu
,
X.
Zhao
,
S.
Long
,
S.
Zhu
,
P.
Sheng
,
W.
Li
,
X.
Lin
, and
B.
Zhu
, “
Fully printed high-performance n-type metal oxide thin-film transistors utilizing coffee-ring effect
,”
Nano-Micro Lett.
13
,
164
(
2021
).
15.
J.
Hong
,
Y.
Jin
,
Y.
Jin
,
Y.
Li
,
J.
Liu
, and
J.
Chen
, “
Spread and retraction dynamics of droplet coalescence on a rectangular pixel for organic light-emitting diode inkjet printing
,”
Phys. Fluids
35
,
072014
(
2023
).
16.
Y.
Zhang
,
X.
Chen
,
F.
Liu
,
L.
Li
,
J.
Dai
, and
T.
Liu
, “
Enhanced coffee-ring effect via substrate roughness in evaporation of colloidal droplets
,”
Adv. Condens. Matter Phys.
2018
,
9795654
.
17.
J.
Niu
,
L.
Qi
,
H.
Lian
,
J.
Luo
,
R.
Zhang
, and
X.
Chao
, “
Revisiting the inhomogeneity in drop-on-demand printing of graphene: An effective route for overcoming the coffee-ring effect
,”
Surf. Interfaces
46
,
104036
(
2024
).
18.
M.
Zhang
,
J.
Zhu
,
Z.
Tao
, and
L.
Qiu
, “
A quantitative phase diagram of droplet impingement boiling
,”
Int. J. Heat Mass Transfer
177
,
121535
(
2021
).
19.
M.
Jadav
,
R. J.
Patel
, and
R. V.
Mehta
, “
Influence of magnetic field on evaporation of a ferrofluid droplet
,”
J. Appl. Phys.
122
,
145302
(
2017
).
20.
S.
Chatterjee
,
M.
Kumar
,
J. S.
Murallidharan
, and
R.
Bhardwaj
, “
Evaporation of initially heated sessile droplets and the resultant dried colloidal deposits on substrates held at ambient temperature
,”
Langmuir
36
,
8407
8421
(
2020
).
21.
X.
Yan
,
J.
Xu
,
Z.
Meng
, and
J.
Xie
, “
A comprehensive comparison between substrate heating and light heating induced nanofluid droplet evaporations
,”
Appl. Therm. Eng.
175
,
115389
(
2020
).
22.
J.
Yang
,
F.
Zheng
, and
B.
Derby
, “
Stability of lines with zero receding contact angle produced by inkjet printing at small drop volume
,”
Langmuir
37
,
26
34
(
2021
).
23.
J.
Hui
,
H.
Zhang
,
J.
Lv
,
C.
Lee
,
C.
Chen
,
Z.
Yan
,
J.
Wang
,
T.
Peng
,
L.
Guo
, and
Z.
Xu
, “
Investigation and prediction of nano-silver line quality upon various process parameters in inkjet printing process based on an experimental method
,”
3D Print. Addit. Manuf.
(published online
2023
).
24.
H.
Lian
,
L.
Qi
,
J.
Luo
, and
R.
Zhang
, “
Drop-on-demand printing of edge-enhanced and conductive graphene twin-lines by coalescence regulation and multi-layers overwriting
,”
2D Mater.
8
,
035004
(
2021
).
25.
P.
Kant
,
A. L.
Hazel
,
M.
Dowling
,
A. B.
Thompson
, and
A.
Juel
, “
POLED displays: Robust printing of pixels
,”
Appl. Phys. Lett.
115
,
163301
(
2019
).
26.
P.
Jepiti
,
S.
Yoon
, and
J.
Kim
, “
Electromigration failure in inkjet-printed Ag conductive lines
,”
Flex. Print. Electron.
8
,
015003
(
2023
).
27.
Z.
Li
,
J.
Huang
,
Y.
Yang
,
S.
Yang
,
J.
Zhang
,
P.
Yuan
, and
J.
Zhang
, “
Additive manufacturing of conformal microstrip antenna using piezoelectric nozzle array
,”
Appl. Sci.
10
,
3082
(
2020
).
28.
N. T.
Dinh
,
E.
Sowade
,
T.
Blaudeck
,
S.
Hermann
,
R. D.
Rodriguez
,
D. R. T.
Zahn
,
S. E.
Schulz
,
R. R.
Baumann
, and
O.
Kanoun
, “
High-resolution inkjet printing of conductive carbon nanotube twin lines utilizing evaporation-driven self-assembly
,”
Carbon
96
,
382
393
(
2016
).
29.
A. C.
Ihnen
,
A. M.
Petrock
,
T.
Chou
,
B. E.
Fuchs
, and
W. Y.
Lee
, “
Organic nanocomposite structure tailored by controlling droplet coalescence during inkjet printing
,”
ACS Appl. Mater. Interfaces
4
,
4691
4699
(
2012
).
30.
P. C.
Duineveld
, “
The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate
,”
J. Fluid Mech.
477
,
175
200
(
2003
).
31.
S. C.
Varma
,
D.
Dasgupta
, and
A.
Kumar
, “
Elasticity can affect droplet coalescence
,”
Phys. Fluids
34
,
093112
(
2022
).
32.
J.
McCraney
,
J.
Ludwicki
,
J.
Bostwick
,
S.
Daniel
, and
P.
Steen
, “
Coalescence-induced droplet spreading: Experiments aboard the International Space Station
,”
Phys. Fluids
34
,
122110
(
2022
).
33.
D.
Soltman
and
V.
Subramanian
, “
Inkjet-printed line morphologies and temperature control of the coffee ring effect
,”
Langmuir
24
,
2224
2231
(
2008
).
34.
J.
Yang
,
P.
He
, and
B.
Derby
, “
Stability bounds for micron scale Ag conductor lines produced by electrohydrodynamic inkjet printing
,”
ACS Appl. Mater. Interfaces
14
,
39601
39609
(
2022
).
35.
X.
Gao
,
H.
Chen
,
Q.
Nie
, and
H.
Fang
, “
Stability of line shapes in inkjet printing at low substrate speeds
,”
Phys. Fluids
34
,
032002
(
2022
).
36.
M.
Liu
,
J.
Wang
,
M.
He
,
L.
Wang
,
F.
Li
,
L.
Jiang
, and
Y.
Song
, “
Inkjet printing controllable footprint lines by regulating the dynamic wettability of coalescing ink droplets
,”
ACS Appl. Mater. Interfaces
6
,
13344
13348
(
2014
).
37.
Z.
Du
,
R.
Xing
,
X.
Cao
,
X.
Yu
, and
Y.
Han
, “
Symmetric and uniform coalescence of ink-jetting printed polyfluorene ink drops by controlling the droplet spacing distance and ink surface tension/viscosity ratio
,”
Polymer
115
,
45
51
(
2017
).
38.
A. D.
Pizarro
,
C. L. A.
Berli
,
G.
Soler-Illia
, and
M. G.
Bellino
, “
Droplets in underlying chemical communication recreate cell interaction behaviors
,”
Nat. Commun.
13
,
3047
(
2022
).
39.
J.
Stringer
and
B.
Derby
, “
Limits to feature size and resolution in ink jet printing
,”
J. Eur. Ceram. Soc.
29
,
913
918
(
2009
).
40.
J.
Stringer
and
B.
Derby
, “
Formation and stability of lines produced by inkjet printing
,”
Langmuir
26
,
10365
10372
(
2010
).
41.
T. H.
Phung
,
S.
Kim
, and
K. S.
Kwon
, “
A high speed electrohydrodynamic (EHD) jet printing method for line printing
,”
J. Micromech. Microeng.
27
,
095003
(
2017
).
42.
R.
Li
,
N.
Ashgriz
,
S.
Chandra
,
J. R.
Andrews
, and
J.
Williams
, “
Drawback during deposition of overlapping molten wax droplets
,”
J. Manuf. Sci. Eng.
130
,
041011
(
2008
).
43.
A.
Dalili
,
S.
Chandra
,
J.
Mostaghimi
,
H. T.
Fan
, and
J. C.
Simmer
, “
Formation of liquid sheets by deposition of droplets on a surface
,”
J. Colloid Interface Sci.
418
,
292
299
(
2014
).
44.
H.
Li
,
J.
Liu
,
K.
Li
, and
Y.
Liu
, “
Piezoelectric micro-jet devices: A review
,”
Sens. Actuator A-Phys.
297
,
111552
(
2019
).
45.
M.
Zhang
,
J.
Chen
,
J.
Zhu
,
Z.
Tao
, and
L.
Qiu
, “
Hybrid manipulation of inkjet-printing deposition pattern of high particle concentration droplet by means of thermal and binary solvent effects
,”
Int. J. Heat Mass Transfer
223
,
125225
(
2024
).
You do not currently have access to this content.