Hydro-viscous drive (HVD) plays a significant role in smoothly transferring torque and flexibly regulating the velocity of the disks. By hydro-viscous drive, we mean that the viscous shear stress of the thin oil film between a multi-layer assembly of rotating parallel disks is generated to transmit torque and power. The laminar-to-turbulent transition is an extremely complicated issue due to the combined effects of squeeze and shear on the oil film within the microscale friction pair system. Hence, a comprehensive and thorough analysis of flow instability in fluid-thermal-solid interaction of tribodynamic behavior is highly desirable. Following a brief introduction of fundamentals of HVD, this paper provides an overall review on the instability mechanisms for three types of canonical flow dynamic models, i.e., plane squeeze flow, plane shear flow, and rotating-disk flow. The effects of various aspects of wall conditions and working media, such as surface microstructure, and temperature-dependent viscosity, on flow instability are then summarized, which can serve as a reference and guidance for optimizing the design of friction pair systems. Based on the review of the former progress, this paper not only explores the in-depth mechanisms regarding the laminar-to-turbulent transition in microchannel flow, but also provides the possibility of bridging the gap between flow instability and tribodynamic behavior.

1.
J. Z.
Cui
,
P. L.
Hou
,
B. G.
Zhang
, and
X. Y.
Zhao
, “
Investigation of flow between deformed disks in hydro-viscous drive
,”
Tribol. Int.
121
,
287
301
(
2018
).
2.
J. Y.
Jang
and
M. M.
Khonsari
, “
Thermal characteristics of a wet clutch
,”
ASME J. Tribol.
121
,
610
617
(
1999
).
3.
J. Z.
Cui
,
F. W.
Xie
,
C. T.
Wang
,
X. J.
Zhang
, and
R.
Xuan
, “
Dynamic transmission characteristics during soft-start of hydro-viscous drive considering fluid-inertia item
,”
Tribol. Online
10
(
1
),
35
47
(
2015
).
4.
C. R.
Aphale
,
J.
Cho
, and
W. W.
Schultz
, “
Modeling and parametric study of torque in open clutch plates
,”
ASME J. Tribol.
128
,
422
430
(
2006
).
5.
H. B.
Xie
,
H. S.
Gong
,
L.
Hu
, and
H. Y.
Yang
, “
Coriolis effects on torque transmission of hydro-viscous film in parallel disks with imposed throughflow
,”
Tribol. Int.
115
,
100
107
(
2017
).
6.
J. H.
Huang
,
J. H.
Wei
, and
M. X.
Qiu
, “
Laminar flow in the gap between two rotating parallel frictional plates in hydro-viscous drive
,”
Chin. J. Mech. Eng.
25
(
1
),
144
152
(
2012
).
7.
J. Z.
Cui
,
H.
Li
,
D.
Zhang
,
Y. W.
Xu
, and
F. W.
Xie
, “
Multi-objective optimization of hydro-viscous flexible drive for dynamic characteristics using genetic algorithm
,”
Ind. Lubr. Tribol.
73
(
7
),
1003
1010
(
2021
).
8.
Y.
Yuan
,
P.
Attibele
, and
Y.
Dong
, “
CFD simulation of the flows within disengaged wet clutches of an automatic transmission
,” SAE Technical Paper No. 2003-01-0320,
2003
.
9.
J. Z.
Cui
,
F. W.
Xie
,
H.
Li
, and
X. Y.
Zhao
, “
Influences of deformed film gaps on dynamic torque behavior of hydroviscous drive
,”
Tribol. Trans.
64
(
3
),
477
500
(
2021
).
10.
J. Z.
Cui
,
D.
Zhang
,
Y. W.
Xu
,
S. X.
Ma
, and
G. T.
Chen
, “
A coupling model for tribodynamic behavior of the hydroviscous flexible drive with consideration of saucer-warping deformation
,”
Tribol. Trans.
66
(
1
),
73
91
(
2023
).
11.
X. X.
Yin
,
Y. G.
Lin
,
W.
Li
, and
H. G.
Gu
, “
Hydro-viscous transmission based maximum power extraction control for continuously variable speed wind turbine with enhanced efficiency
,”
Renewable Energy
87
,
646
655
(
2016
).
12.
Q. R.
Meng
and
Y. F.
Hou
, “
Effect of oil film squeezing on hydro-viscous drive speed regulating start
,”
Tribol. Int.
43
,
2134
2138
(
2010
).
13.
S.
Ishizawa
, “
The unsteady laminar flow between two parallel discs with arbitrarily varying gap width
,”
Bull. JSME
9
(
35
),
533
550
(
1966
).
14.
C. J.
Lawrence
,
Y.
Kuang
, and
S.
Weinbaum
, “
The inertia draining of a thin fluid layer between parallel plates with a constant normal force. Part 2. Boundary layer and exact numerical solutions
,”
J. Fluid Mech.
156
,
479
494
(
1985
).
15.
E. A.
Hamza
, “
Impulsive squeezing with suction and injection
,”
ASME J. Appl. Mech.
66
,
945
951
(
1999
).
16.
J. T.
Stuart
,
R.
DiPrima
,
P.
Eagles
, and
A.
Davey
, “
On the instability of the flow in a squeeze lubrication film
,”
Proc. R. Soc. A
430
,
347
375
(
1990
).
17.
P.
Hall
and
D. T.
Papageorgiou
, “
The onset of chaos in a class of Navier-Stokes solutions
,”
J. Fluid Mech.
393
,
59
87
(
1999
).
18.
S. N.
Aristov
and
I. M.
Gitman
, “
Viscous flow between two moving parallel disks: Exact solutions and stability analysis
,”
J. Fluid Mech.
464
,
209
215
(
2002
).
19.
K. Q.
Zhu
,
L.
Ren
, and
Y.
Liu
, “
Linear stability of flows in a squeeze film
,”
Chin. Phys. Lett.
22
(
6
),
1460
1463
(
2005
).
20.
J. D.
Jackson
, “
A study of squeezing flow
,”
Appl. Sci. Res., Sect. A
11
(
1
),
148
152
(
1963
).
21.
J.
Engmann
,
C.
Servais
, and
A. S.
Burbidge
, “
Squeeze flow theory and applications to rheometry: A review
,”
J. Non-Newtonian Fluid Mech.
132
,
1
27
(
2005
).
22.
L.
Espin
and
D. T.
Papageorgiou
, “
Flow in a channel with accelerating or decelerating wall velocity: A comparison between self-similar solutions and Navier-Stokes computations in finite domains
,”
Phys. Fluids
21
,
113601
(
2009
).
23.
T.
Hayat
,
A.
Qayyum
, and
A.
Alsaedi
, “
MHD unsteady squeezing flow over a porous stretching plate
,”
Eur. Phys. J. Plus
128
(
12
),
157
(
2013
).
24.
E. A.
Moss
,
A.
Krassnokutski
,
B. W.
Skews
, and
R. T.
Paton
, “
Highly transient squeeze-film flows
,”
J. Fluid Mech.
671
,
384
398
(
2011
).
25.
A.
Krassnokutski
,
E. A.
Moss
, and
B. W.
Skews
, “
An experimental study of highly transient squeeze-film flows
,”
Phys. Fluids
25
,
063102
(
2013
).
26.
D. V.
Knyazev
, “
Axisymmetric flows of an incompressible fluid between movable rotating disks
,”
Fluid Dyn.
46
(
4
),
558
564
(
2011
).
27.
S. N.
Aristov
and
D. V.
Knyazev
, “
Viscous fluid flow between moving parallel plates
,”
Fluid Dyn.
47
(
4
),
476
482
(
2012
).
28.
A. G.
Petrov
, “
Exact solution of the Navier-Stokes equations in a fluid layer between the moving parallel layer
,”
J. Appl. Mech. Tech. Phys.
53
,
642
646
(
2012
).
29.
A. G.
Petrov
and
I. S.
Kharlamova
, “
The solutions of Navier-Stokes equations in squeezing flow between parallel plates
,”
Eur. J. Mech. B
48
,
40
48
(
2014
).
30.
A. G.
Petrov
, “
Exact solution of the equations of axisymmetric viscous fluid between parallel plates approaching and moving apart from one another
,”
Fluid Dyn.
54
,
56
66
(
2019
).
31.
V.
Marinca
,
N.
Herisanu
, and
I.
Nemes
, “
Optimal homotopy asymptotic method with application to thin film flow
,”
Cent. Eur. J. Phys.
6
(
3
),
648
653
(
2008
).
32.
V.
Marinca
,
N.
Herisanu
,
C.
Bota
, and
B.
Marinca
, “
An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate
,”
Appl. Math. Lett.
22
(
2
),
245
251
(
2009
).
33.
M.
Idrees
,
S.
Islam
,
S.
Haq
, and
S.
Islam
, “
Application of the optimal homotopy asymptotic method to squeezing flow
,”
Comput. Math. Appl.
59
(
12
),
3858
3866
(
2010
).
34.
M.
Qayyum
,
H.
Khan
,
M. T.
Rahim
, and
I.
Ullah
, “
Analysis of unsteady axisymmetric squeezing fluid flow with slip and non-slip boundaries using OHAM
,”
Math. Problems Eng.
2015
,
1
11
.
35.
T.
Hayat
,
M. W. A.
Khan
,
A.
Alsaedi
, and
M. I.
Khan
, “
Squeezing flow of second grade liquid subject to non-Fourier heat flux and heat generation/absorption
,”
Colloid Polym. Sci.
295
,
967
975
(
2017
).
36.
M. R.
Shirkhani
,
H. A.
Hoshyar
,
I.
Rahimipetroudi
,
H.
Akhavan
, and
D. D.
Ganji
, “
Unsteady time-dependent incompressible Newtonian fluid flow between two parallel plates by homotopy analysis method (HAM), homotopy perturbation method (HPM) and collocation method (CM)
,”
Propul. Power Res.
7
(
3
),
247
256
(
2018
).
37.
O. A.
Ilhan
, “
Approximation solution of the squeezing flow by the modification of optimal homotopy asymptotic method
,”
Eur.opean Phys. J. Plus
135
(
9
),
745
(
2020
).
38.
J.
Lang
,
S.
Santhanam
, and
Q. H.
Wu
, “
Exact and approximate solutions for transient squeezing flow
,”
Phys. Fluids
29
,
103606
(
2017
).
39.
J.
Lang
,
R.
Nathan
, and
Q. H.
Wu
, “
Theoretical and experimental study of transient squeezing flow in a highly porous film
,”
Tribol. Int.
135
,
259
268
(
2019
).
40.
J.
Lang
,
L. Y.
Wang
, and
Q. H.
Wu
, “
Theoretical study of oscillating squeezing flow through a porous medium
,”
Tribol. Int.
162
,
107110
(
2021
).
41.
D.
Alviso
,
D.
Sciamarella
,
A.
Gronskis
, and
G.
Artana
, “
Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supports
,”
Bioinspiration Biomimetics
17
(
6
),
065005
(
2022
).
42.
J.
Prakash
,
D.
Tripathi
,
O. A.
Beg
, and
R. K.
Sharma
, “
Electroosmotic modulated unsteady squeezing flow with temperature-dependent thermal conductivity, electric and magnetic fields effects
,”
J. Phys. Condens. Matter
34
,
175701
(
2022
).
43.
N. B.
Naduvinamani
,
B. N.
Hanumagowda
, and
S. T.
Fathima
, “
Combined effects of MHD and surface roughness on couple-stress squeeze film lubrication between porous circular stepped plates
,”
Tribol. Int.
56
,
19
29
(
2012
).
44.
X. H.
Su
and
Y. X.
Yin
, “
Effects of an inclined magnetic field on the unsteady squeezing flow between parallel plates with suction/injection
,”
J. Magn. Magn. Mater.
484
,
266
271
(
2019
).
45.
C. L.
Zhao
,
W. Y.
Zhang
,
D. V. D.
Ende
, and
F.
Mugele
, “
Electroviscous effects on the squeezing flow of thin electrolyte solution films
,”
J. Fluid Mech.
888
,
A29
(
2020
).
46.
T.
Thumma
and
V. M.
Magagula
, “
Transient electromagnetohydrodynamic radiative squeezing flow between two parallel Riga plates using a spectral local linearization approach
,”
Heat Transfer-Asian Res.
49
(
1
),
67
85
(
2020
).
47.
P.
Drazin
and
W.
Reid
,
Hydrodynamic Stability
(
Cambridge University Press
,
Cambridge, UK
,
2004
).
48.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
(
Springer
,
New York
,
2001
).
49.
X. S.
Wu
, “
Nonlinear theories for shear flow instabilities: Physical insights and practical implications
,”
Annu. Rev. Fluid Mech.
51
,
451
485
(
2019
).
50.
B. J.
Bayly
and
S. A.
Orgzag
, “
Instability mechanism shear-flow transition
,”
Ann. Rev. Fluid Mech.
20
,
359
391
(
1988
).
51.
P. G.
Baines
and
H.
Mitsudera
, “
On the mechanism of shear flow instabilities
,”
J. Fluid Mech.
276
,
327
342
(
1994
).
52.
T.
Tatsumi
and
T.
Yoshimura
, “
Stability of the laminar flow in a rectangular duct
,”
J. Fluid Mech.
212
,
437
449
(
1990
).
53.
L.
Kleiser
and
T. A.
Zang
, “
Numerical simulation of transition in wall-bounded shear flows
,”
Annu. Rev. Fluid Mech.
23
,
495
537
(
1991
).
54.
P.
Huerre
and
P. A.
Monkewitz
, “
Local and global instabilities in spatially developing flows
,”
Annu. Rev. Fluid Mech.
22
,
473
537
(
1990
).
55.
P. A.
Monkewitz
,
P.
Huerre
, and
J.
Chomaz
, “
Global linear stability analysis of weakly non-parallel shear flows
,”
J. Fluid Mech.
251
,
1
20
(
1993
).
56.
V.
Theofilis
, “
Advances in global linear instability analysis of nonparallel and three-dimensional flows
,”
Prog. Aerosp. Sci.
39
,
249
315
(
2003
).
57.
V.
Theofilis
,
P. W.
Duck
, and
J.
Owen
, “
Viscous linear stability analysis of rectangular duct and cavity flows
,”
J. Fluid Mech.
505
,
249
286
(
2004
).
58.
V.
Theofilis
, “
Global linear instability
,”
Annu. Rev. Fluid Mech.
43
(
1
),
319
352
(
2011
).
59.
L. N.
Trefethen
,
A. E.
Trefethen
,
S. C.
Reddy
, and
T. A.
Driscoll
, “
Hydrodynamic stability without eigenvalues
,”
Science
261
(
5121
),
578
584
(
1993
).
60.
K. M.
Butler
and
B. F.
Farrell
, “
Three-dimensional optimal perturbations in viscous shear flow
,”
Phys. Fluids A
4
(
8
),
1637
1650
(
1992
).
61.
S. C.
Reddy
and
D. S.
Henningson
, “
Energy growth in viscous channel flow
,”
J. Fluid Mech.
252
,
209
238
(
1993
).
62.
A. P.
Hooper
and
R.
Grimshaw
, “
Two-dimensional disturbance growth of linearly stable viscous shear flows
,”
Phys. Fluids
8
(
6
),
1424
1432
(
1996
).
63.
A. P.
Hooper
and
R.
Grimshaw
, “
Transient linear growth and nonlinear effects
,”
Stud. Appl. Math.
106
(
1
),
47
68
(
2001
).
64.
P. J.
Schmid
, “
Nonmodal stability theory
,”
Annu. Rev. Fluid Mech.
39
(
1
),
129
162
(
2007
).
65.
R.
Kaiser
,
A.
Tilgner
, and
W.
von Wahl
, “
A generalized energy functional for plane Couette flow
,”
SIAM J. Math. Anal.
37
,
438
454
(
2005
).
66.
R.
Kaiser
and
G.
Mulone
, “
A note on nonlinear stability of plane parallel shear flows
,”
J. Math. Anal. Appl.
302
,
543
556
(
2005
).
67.
Y.
Li
and
Z.
Lin
, “
A resolution of the Sommerfeld paradox
,”
SIAM J. Math. Anal.
43
,
1923
1932
(
2011
).
68.
Y.
Lan
and
Y. C.
Li
, “
A resolution of the turbulent paradox: Numerical implementation
,”
Int. J. Non-Linear Mech.
51
,
1
9
(
2013
).
69.
A.
Monokrousos
,
A.
Bottaro
,
L.
Brandt
,
A. D.
Vita
, and
D. S.
Henningson
, “
Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows
,”
Phys. Rev. Lett.
106
,
134502
(
2011
).
70.
C. C. T.
Pringle
,
A. P.
Willis
, and
R. R.
Kerswell
, “
Minimal seeds for shear flow turbulence: Using nonlinear transient growth to touch the edge of chaos
,”
J. Fluid Mech.
702
,
415
443
(
2012
).
71.
S. M. E.
Rabin
,
C. P.
Caulfield
, and
R. R.
Kerswell
, “
Triggering turbulence efficiently in plane Couette flow
,”
J. Fluid Mech.
712
,
244
272
(
2012
).
72.
S.
Cherubini
and
P.
De Palma
, “
Nonlinear optimal perturbations in a Couette flow: Bursting and transition
,”
J. Fluid Mech.
716
,
251
279
(
2013
).
73.
M.
Farano
,
S.
Cherubini
,
J. C.
Robinet
, and
P.
De Palma
, “
Optimal bursts in turbulent channel flow
,”
J. Fluid Mech.
817
,
35
60
(
2017
).
74.
R. R.
Kerswell
,
C. C. T.
Pringle
, and
A. P.
Willis
, “
An optimization approach for analysing nonlinear stability with transition to turbulence in fluids as an exemplar
,”
Rep. Prog. Phys.
77
(
8
),
085901
(
2014
).
75.
R. R.
Kerswell
, “
Nonlinear nonmodal stability theory
,”
Annu. Rev. Fluid Mech.
50
,
319
345
(
2018
).
76.
P.
Falsaperla
,
A.
Giacobbe
, and
G.
Mulone
, “
Nonlinear stability results for plane Couette and Poiseuille flows
,”
Phys. Rev. E
100
,
013113
(
2019
).
77.
A.
Prigent
,
G.
Gregoire
,
H.
Chate
, and
O.
Dauchot
, “
Long-wavelength modulation of turbulent shear flows
,”
Physica D
174
(
1–4
),
100
113
(
2003
).
78.
D.
Barkey
and
L. S.
Tuckerman
, “
Mean flow of turbulent-laminar patterns in plane Couette flow
,”
J. Fluid Mech.
576
,
109
137
(
2007
).
79.
P.
Falsaperla
,
G.
Mulone
, and
C.
Perrone
, “
Energy stability of plane Couette and Poiseuille flows: A conjecture
,”
Eur. J. Mech. B
93
,
93
100
(
2022
).
80.
D. D.
Joseph
and
S.
Carmi
, “
Stability of Poiseuille flow in pipes, annuli, and channels
,”
Q. Appl. Math.
26
,
575
599
(
1969
).
81.
C. S.
Paranjape
,
Y.
Duguet
, and
B.
Hof
, “
Oblique stripe solutions of channel flow
,”
J. Fluid Mech.
897
,
A7
(
2020
).
82.
P. J.
Goulart
and
S.
Chernyshenko
, “
Global stability analysis of fluid flows using sum-of-squares
,”
Physica D
241
(
6
),
692
704
(
2012
).
83.
F.
Fuentes
,
D.
Goluskin
, and
S.
Chernyshenko
, “
Global stability of fluid flows despite transient growth energy
,”
Phys. Rev. Lett.
128
(
20
),
204502
(
2022
).
84.
P. T.
Nagy
,
M.
Kiss
, and
G.
Paal
, “
Analytic investigation of the compatibility condition and the initial evolution of a smooth velocity field for the Navier–Stokes equation in a channel configuration
,”
Fluid Dyn. Res.
54
,
055502
(
2022
).
85.
F.
Fraternale
,
L.
Domenicale
,
G.
Staffilani
, and
D.
Tordella
, “
Internal waves in sheared flows: Lower bound of the vorticity growth and propagation discontinuities in the parameter space
,”
Phys. Rev. E
97
,
063102
(
2018
).
86.
H.
Lee
and
S. X.
Wang
, “
Extension of classical stability theory to viscous planar wall-bounded shear flows
,”
J. Fluid Mech.
877
,
1134
1162
(
2019
).
87.
P. T.
Nagy
,
G.
Paal
, and
M.
Kiss
, “
Imposing a constraint on the discrete Reynolds-Orr equation demonstrated in shear flows
,”
Phys. Fluids
35
,
034115
(
2023
).
88.
W. S.
Saric
,
H. L.
Reed
, and
E. B.
White
, “
Stability and transition of three-dimensional boundary layers
,”
Annu. Rev. Fluid Mech.
35
,
413
440
(
2003
).
89.
R. J.
Lingwood
, “
Absolute instability of the Ekman layer and related rotating flows
,”
J. Fluid Mech.
331
,
405
428
(
1997
).
90.
M.
Özkan
,
P. J.
Thomas
,
A. J.
Cooper
, and
S. J.
Garrette
, “
Comparison of the effects of surface roughness and confinement on rotor-stator cavity flow
,”
Eng. Appl. Comput. Fluid Dyn.
11
(
1
),
142
158
(
2017
).
91.
T.
von Kármán
, “
Über laminare and turbulente reibung
,”
Z. Angew. Math. Mech.
1
,
233
251
(
1921
).
92.
R. J.
Lingwood
and
P. H.
Alfredsson
, “
Instabilities of the von Kármán boundary layer
,”
ASME Appl. Mech. Rev.
67
,
030803
(
2015
).
93.
G.
Gauthier
,
P.
Gondret
,
F.
Moisy
, and
M.
Rabaud
, “
Instabilities in the flow between co- and counter-rotating disks
,”
J. Fluid Mech.
473
,
1
21
(
2002
).
94.
R. J.
Lingwood
and
S. J.
Garrett
, “
The effects of surface mass flux on the instability of the BEK system of rotating boundary-layer flows
,”
Eur. J. Mech. B
30
,
299
310
(
2011
).
95.
A. J.
Faller
, “
Instability and transition of the disturbed flow over a rotating disk
,”
J. Fluid Mech.
230
,
245
269
(
1991
).
96.
E.
Serre
,
E.
Tuliszka-Sznitko
, and
P.
Bontoux
, “
Coupled numerical and theoretical study of the flow transition between a rotating and a stationary disk
,”
Phys. Fluids
16
(
3
),
688
706
(
2004
).
97.
H. L.
Reed
and
W. S.
Saric
, “
Stability of three-dimensional boundary layers
,”
Annu. Rev. Fluid. Mech.
21
,
235
284
(
1989
).
98.
P.
Hall
, “
An asymptotic investigation of the stationary modes of instability of the boundary layer on a rotating disc
,”
Proc. R. Soc. London A
406
,
93
106
(
1986
).
99.
Y. Y.
Lee
,
Y. K.
Hwang
, and
K. W.
Lee
, “
The flow instability over the infinite rotating disk
,”
KSME Int. J.
17
,
1388
1395
(
2003
).
100.
A. J.
Cooper
and
P. W.
Carpenter
, “
The stability of rotating-disc boundary layer flow over a compliant wall. Part 1. Type Ι and Π instabilities
,”
J. Fluid Mech.
350
,
231
259
(
1997
).
101.
B.
Launder
,
S.
Poncet
, and
E.
Serre
, “
Laminar, transitional, and turbulent flows in rotor-stator cavities
,”
Annu. Rev. Fluid Mech.
42
,
229
248
(
2010
).
102.
R. J.
Lingwood
, “
Absolute instability of the boundary layer on a rotating disk
,”
J. Fluid Mech.
299
,
17
33
(
1995
).
103.
R. J.
Lingwood
, “
An experimental study of absolute instability of the rotating-disk boundary layer
,”
J. Fluid Mech.
314
,
373
405
(
1996
).
104.
C.
Davies
and
P. W.
Carpenter
, “
Global behavior corresponding to the absolute instability of the rotating-disc boundary layer
,”
J. Fluid Mech.
486
,
287
329
(
2003
).
105.
H.
Othman
and
T.
Corke
, “
Experimental investigation of absolute instability of a rotating-disk boundary layer
,”
J. Fluid Mech.
565
,
63
94
(
2006
).
106.
C.
Davies
,
C.
Thomas
, and
P. W.
Carpenter
, “
Global instability of the rotating-disk boundary layer
,”
J. Eng. Math.
57
(
3
),
219
236
(
2007
).
107.
J. J.
Healey
, “
Model for unstable global modes in the rotating-disk boundary layer
,”
J. Fluid Mech.
663
,
148
159
(
2010
).
108.
S.
Imayama
,
P. H.
Alfredsson
, and
R. J.
Lingwood
, “
An experimental study of edge effects on rotating-disk transition
,”
J. Fluid Mech.
716
,
638
657
(
2013
).
109.
B.
Pier
, “
Transition near the edge of a rotating disk
,”
J. Fluid Mech.
737
,
R1
(
2013
).
110.
B.
Pier
, “
Finite-amplitude crossflow vortices, secondary instability and transition in the rotating-disk boundary layer
,”
J. Fluid Mech.
487
,
315
343
(
2003
).
111.
B.
Pier
,
P.
Huerre
,
J. M.
Chomaz
, and
A.
Couairon
, “
Steep nonlinear global modes in spatially developing media
,”
Phys. Fluids
10
(
10
),
2433
2435
(
1998
).
112.
A. P.
Bassom
,
K. M.
Kuzanyan
, and
A. M.
Soward
, “
A nonlinear dynamo wave riding on a spatially varying background
,”
Proc. R. Soc. London A
455
,
1443
1481
(
1999
).
113.
B.
Pier
and
P.
Huerre
, “
Nonlinear self-sustained structures and fronts in spatially developing wake flows
,”
J. Fluid Mech.
435
,
145
174
(
2001
).
114.
W.
Van Saarloos
, “
Front propagation into unstable states
,”
Phys. Rep.
386
(
2–6
),
29
222
(
2003
).
115.
B.
Viaud
,
E.
Serre
, and
J. M.
Chomaz
, “
The elephant mode between two rotating disks
,”
J. Fluid Mech.
598
,
451
464
(
2008
).
116.
B.
Viaud
,
E.
Serre
, and
J. M.
Chomaz
, “
Transition to turbulence through steep global-modes cascade in an open rotating cavity
,”
J. Fluid Mech.
688
,
493
506
(
2011
).
117.
S.
Imayama
,
P. H.
Alfredsson
, and
R. J.
Lingwood
, “
On the laminar-turbulent transition of the rotating-disk flow: The role of absolute instability
,”
J. Fluid Mech.
745
,
132
163
(
2014
).
118.
E.
Appelquist
,
P.
Schlatter
,
P. H.
Alfredsson
, and
R. J.
Lingwood
, “
Global linear instability of the rotating-disk flow investigated through simulations
,”
J. Fluid Mech.
765
,
612
631
(
2015
).
119.
C.
Thomas
and
C.
Davies
, “
On the impulse response and global instability development of the infinite rotating-disc boundary layer
,”
J. Fluid Mech.
857
,
239
269
(
2018
).
120.
E.
Appelquist
,
P.
Schlatter
,
P. H.
Alfredsson
, and
R. J.
Lingwood
, “
On the global nonlinear instability of the rotating-disk flow over a finite domain
,”
J. Fluid Mech.
803
,
332
355
(
2016
).
121.
E.
Appelquist
,
P.
Schlatter
,
P. H.
Alfredsson
, and
R. J.
Lingwood
, “
Transition to turbulence in the rotating-disk boundary-layer flow with stationary vortices
,”
J. Fluid Mech.
836
,
43
71
(
2018
).
122.
C.
Thomas
,
S. O.
Stephen
, and
C.
Davies
, “
Effects of partial-slip on the local-global linear stability of the infinite rotating disk boundary layer
,”
Phys. Fluids
32
,
074105
(
2020
).
123.
C.
Thomas
and
C.
Davies
, “
An adjoint approach for computing the receptivity of the rotating disc boundary layer to surface roughness
,”
J. Fluid Mech.
926
,
A16
(
2021
).
124.
L.
Schouveiler
,
P.
Le Gai
, and
M. P.
Chauve
, “
Stability of a travelling roll system in a rotating disk flow
,”
Phys. Fluids
10
(
11
),
2695
2697
(
1998
).
125.
L.
Schouveiler
,
P.
Le Gai
, and
M. P.
Chauve
, “
Instabilities of the flow between a rotating and a stationary disk
,”
J. Fluid Mech.
443
,
329
350
(
2001
).
126.
J. W.
Daily
and
R. E.
Nece
, “
Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks
,”
ASME J. Basic Eng.
82
,
217
232
(
1960
).
127.
A.
Cros
and
P.
Le Gai
, “
Spatiotemporal intermittency in the torsional Couette flow between a rotating and a stationary disk
,”
Phys. Fluids
14
(
11
),
3755
3765
(
2002
).
128.
P. I.
San'kov
and
E. M.
Smirnov
, “
Bifurcation and transition to turbulence in the gap between rotating and stationary parallel disks
,”
Fluid. Dyn.
19
,
695
702
(
1985
).
129.
A.
Cros
,
R.
Ali
,
P.
Legal
,
P. J.
Thomas
,
L.
Schouveiler
,
P. W.
Carpenter
, and
M. P.
Chauve
, “
Effects of wall compliance on the laminar-turbulent transition of torsional Couette flow
,”
J. Fluid Mech.
481
,
177
186
(
2003
).
130.
G.
Gauthier
,
P.
Gondret
, and
M.
Rabaud
, “
Axisymmetric propagating vortices in the flow between a stationary and a rotating disk enclosed by a cylinder
,”
J. Fluid Mech.
386
,
105
126
(
1999
).
131.
L.
Schouveiler
,
M. P.
Chauve
,
P.
Le Gai
, and
Y.
Takeda
, “
Spiral and circular waves in the flow between a rotating and a stationary disk
,”
Exp. Fluids
26
,
179
187
(
1999
).
132.
D.
Remy
,
G.
Gauthier
, and
D.
Buisine
, “
Instabilities between rotating and stationary parallel disks with suction
,”
Phys. Fluids
17
,
018102
(
2005
).
133.
S.
Poncet
and
M. P.
Chauve
, “
Crossflow instability in rotor-stator flows with axial inward throughflow
,”
J. Fluid Mech.
545
,
281
289
(
2005
).
134.
S.
Poncet
,
E.
Serre
, and
P.
Le Gal
, “
Revisiting the two first instabilities of the flow in an annular rotor-stator cavity
,”
Phys. Fluids
21
,
064106
(
2009
).
135.
A.
Cros
,
E.
Floriani
,
P.
Le Gal
, and
R.
Lima
, “
Transition to turbulence of the Batchelor flow in a rotor/stator device
,”
Eur. J. Mech. B
24
,
409
424
(
2005
).
136.
E.
Yim
,
J. –M.
Chomaz
,
D.
Martinand
, and
E.
Serre
, “
Transition to turbulence in the rotating disk boundary layer of a rotor-stator cavity
,”
J. Fluid Mech.
848
,
631
647
(
2018
).
137.
D.
Martinand
,
E.
Serre
, and
B.
Viaud
, “
Instabilities and routes to turbulence in rotating disc boundary layers and cavities
,”
Proc. R. Soc. London A
381
(
2243
),
20220135
(
2023
).
138.
E.
Serre
,
S.
Hugues
,
E.
Crespo del Arco
,
A.
Randriamampianina
, and
P.
Bontoux
, “
Axisymmetric and three-dimensional instabilities in an Ekman boundary-layer flow
,”
Int. J. Heat Fluid Flow
22
,
82
93
(
2001
).
139.
N. P.
Hoffmann
and
F. H.
Busse
, “
Linear instability of Poiseuille-Couette-Ekman flows: Local results for flows between differentially rotating disks with throughflow
,”
Phys. Fluids
13
(
9
),
2735
2738
(
2001
).
140.
N. P.
Hoffmann
,
F. H.
Busse
, and
W. L.
Chen
, “
Transition to complex flows in the Ekman-Couette layer
,”
J. Fluid Mech.
366
,
311
331
(
1998
).
141.
G. K.
Batchelor
, “
Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow
,”
Q. J. Mech. Appl. Math.
4
,
29
41
(
1951
).
142.
S.
Poncet
,
M. P.
Chauve
, and
P.
Legal
, “
Turbulent rotating disk flow with inward throughflow
,”
J. Fluid Mech.
522
,
253
262
(
2005
).
143.
A.
Singh
, “
Inward flow between stationary and rotating disks
,”
ASME J. Fluids Eng.
136
,
101205
(
2014
).
144.
J. M.
Lopez
,
J. E.
Hart
,
F.
Marques
,
S.
Kittelman
, and
J.
Shen
, “
Instability and mode interactions in a differentially-driven rotating cylinder
,”
J. Fluid Mech.
462
,
383
409
(
2002
).
145.
F.
Moisy
,
O.
Doare
,
T.
Pasutto
,
O.
Dause
, and
M.
Rabaud
, “
Experimental and numerical study of the shear layer instability between two counter-rotating disks
,”
J. Fluid Mech.
507
,
175
202
(
2004
).
146.
F.
Ravelet
,
A.
Chiffaudel
, and
F.
Daviaud
, “
Supercritical transition to turbulence in an inertially driven von Kármán closed flow
,”
J. Fluid Mech.
601
,
339
364
(
2008
).
147.
C.
Nore
,
L. S.
Tuckerman
,
O.
Daube
, and
S.
Xin
, “
The 1:2 mode interaction in exactly counter-rotating von Kármán swirling flow
,”
J. Fluid Mech.
477
,
51
88
(
2003
).
148.
C.
Nore
,
F.
Moisy
, and
L.
Quartier
, “
Experimental observation of near-heteroclinic cycles in the von Kármán swirling flow
,”
Phys. Fluids
17
,
064103
(
2005
).
149.
M. C.
Navarro
,
L.
Martin Witkowski
,
L. S.
Tuckerman
, and
P.
Le Quere
, “
Building a reduced model for nonlinear dynamics in Rayleigh-Bénard convection with counter-rotating disks
,”
Phys. Rev. E
81
,
036323
(
2010
).
150.
C.
Nore
,
M.
Tartar
,
O.
Daube
, and
L. S.
Tuckerman
, “
Survey of instability thresholds of flow between exactly counter-rotating disks
,”
J. Fluid Mech.
511
,
45
65
(
2004
).
151.
C.
Nore
,
L.
Martin Witkowski
,
E.
Foucault
,
J.
Pecheux
,
O.
Daube
, and
P.
Le Quere
, “
Competition between axisymmetric and three-dimensional patterns between exactly counter-rotating disks
,”
Phys. Fluids
18
,
054102
(
2006
).
152.
T. C.
Lackey
and
F.
Sotiropoulos
, “
Relationship between stirring rate and Reynolds number in the chaotically advected steady flow in a container with exactly counter-rotating lids
,”
Phys. Fluids
18
,
053601
(
2006
).
153.
E. C.
Del Arco
,
J. J.
Sanchez-Alvarez
,
E.
Serre
,
A.
De La Torre
, and
J.
Burguete
, “
Numerical and experimental study of the time-dependent states and the slow dynamics in a von Kármán swirling flow
,”
Geophys. Astrophys. Fluid Dyn.
103
(
2–3
),
163
177
(
2009
).
154.
A.
Giesecke
,
F.
Stefani
, and
J.
Burguete
, “
Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows
,”
Phys. Rev. E
86
,
066303
(
2012
).
155.
P.
Gutierrez-Castillo
and
J. M.
Lopez
, “
Instabilities of the sidewall boundary layer in a rapidly rotating split cylinder
,”
Eur. J. Mech. B
52
,
76
84
(
2015
).
156.
P.
Gutierrez-Castillo
and
J. M.
Lopez
, “
Nonlinear mode interactions in a counter-rotating split-cylinder flow
,”
J. Fluid Mech.
816
,
719
745
(
2017
).
157.
J.
Pecheux
and
E.
Foucault
, “
Axisymmetric instabilities between coaxial rotating disks
,”
J. Fluid Mech.
563
,
293
318
(
2006
).
158.
P.
Gutierrez-Castillo
and
J. M.
Lopez
, “
Imperfect O(2) symmetry in counter-rotating split-cylinder flow
,”
Phys. Fluids
34
,
014105
(
2022
).
159.
P.
Gutierrez-Castillo
and
J. M.
Lopez
, “
Differentially rotating split-cylinder flow: Responses to weak harmonic forcing in the rapid rotation regime
,”
Phys. Rev. E
2
(
8
),
084802
(
2017
).
160.
Y.
Burnishev
and
V.
Steinberg
, “
Torque and pressure fluctuations in turbulent von Karman swirling flow between two counter-rotating disks
,”
Phys. Fluids
26
(
5
),
055102
(
2014
).
161.
L. Y.
Chen
,
R. T.
Li
,
F. W.
Xie
, and
Y.
Wang
, “
Load-bearing capacity research in wet clutches with surface texture
,”
Measurement
142
,
96
104
(
2019
).
162.
H. W.
Cui
,
Y. Y.
Jiang
, and
Q. L.
Wang
, “
Load-bearing capacity investigation of friction pairs in hydro-viscous drive based on fractal contact theory
,”
ASME J. Tribol.
143
(
12
),
121801
(
2021
).
163.
C. I.
Papadopoulos
,
L.
Kaiktsis
, and
M.
Fillon
, “
Computational fluid dynamics thermohydrodynamic analysis of three-dimensional sector-pad thrust bearings with rectangular dimples
,”
ASME J. Tribol.
136
,
011702
(
2014
).
164.
A.
Gherca
,
A.
Fatu
,
M.
Hajjam
, and
P.
Maspeyrot
, “
Influence of surface texturing on the hydrodynamic performance of a thrust bearing operating in steady-state and transient lubrication regime
,”
Tribol. Int.
102
,
305
318
(
2016
).
165.
M.
Marian
,
A.
Almqvist
,
A.
Rosenkranz
, and
M.
Fillon
, “
Numerical micro-texture optimization for lubricated contacts-A critical discussion
,”
Friction
10
(
11
),
1772
1809
(
2022
).
166.
I.
Etsion
,
Y.
Kligerman
, and
G.
Halperin
, “
Analytical and experimental investigation of laser-textured mechanical seal faces
,”
Tribol. Trans
42
,
511
516
(
1999
).
167.
Y.
Feldman
,
Y.
Kligerman
, and
I.
Etsion
, “
A hydrostatic laser surface textured gas seal
,”
Tribol. Lett.
22
(
1
),
21
28
(
2006
).
168.
N.
Brunetiere
and
B.
Tournerie
, “
Numerical analysis of s surface-textured mechanical seal operating in mixed lubrication regime
,”
Tribol. Int.
49
,
80
89
(
2012
).
169.
M.
Adjemout
,
A.
Andrieux
,
J.
Bouyer
,
N.
Brunetiere
,
G.
Marcos
, and
T.
Czerwiec
, “
Influence of the real dimple shape on the performance of a textured mechanical seal
,”
Tribol. Int.
115
,
409
416
(
2017
).
170.
Y. K.
Zhou
,
H.
Zhu
,
W.
Tang
,
C. B.
Ma
, and
W. Q.
Zhang
, “
Development of the theoretical model for the optimal design of surface texturing on cylinder liner
,”
Tribol. Int.
52
,
1
6
(
2012
).
171.
A.
Usman
and
C. W.
Park
, “
Optimizing the tribological performance of textured piston ring-liner contact for reduced frictional losses in SI engine: Warm operating conditions
,”
Tribol. Int.
99
,
224
236
(
2016
).
172.
P.
Pawlus
,
W.
Koszela
, and
R.
Reizer
, “
Surface texturing of cylinder liners: A review
,”
Materials
15
(
23
),
8629
(
2022
).
173.
I.
Etsion
,
G.
Halperin
,
V.
Brizmer
, and
Y.
Kligerman
, “
Experimental investigation of laser surface textured parallel thrust bearing
,”
Tribol. Lett.
17
,
295
300
(
2004
).
174.
Y.
Henry
,
J.
Bouyer
, and
M.
Fillon
, “
An experimental analysis of the hydrodynamic contribution of textured thrust bearing during steady-state operation: A comparison with the untextured parallel surface configuration
,”
Proc. Inst. Mech. Eng. Part J
229
,
362
375
(
2014
).
175.
W. L.
Liu
,
H. J.
Ni
,
P.
Wang
, and
H. L.
Chen
, “
Investigation on the tribological performance of micro-dimples textured surface combined with longitudinal or transverse vibration under hydrodynamic lubrication
,”
Int. J. Mech. Sci.
174
,
105474
(
2020
).
176.
X. Q.
Yu
,
S.
He
, and
R. L.
Cai
, “
Frictional characteristics of mechanical seals with a laser-textured seal face
,”
J. Mater. Process Technol.
129
,
463
466
(
2002
).
177.
Y.
Qiu
and
M. M.
Khonsari
, “
Experimental investigation of tribological performance of laser textured stainless steel rings
,”
Tribol. Int.
44
,
635
644
(
2011
).
178.
T. Y.
Chen
,
J. H.
Ji
,
Y. H.
Fu
,
X. P.
Yang
,
H.
Fu
, and
L. N.
Fang
, “
Tribological performance of UV picosecond laser multi-scale composite textures for C/SiC mechanical seals: Theoretical analysis and experimental verification
,”
Ceram. Int.
47
(
16
),
23162
23180
(
2021
).
179.
A.
Borghi
,
E.
Gualtieri
,
D.
Marchetto
,
L.
Moretti
, and
S.
Valeri
, “
Tribological effects of surface texturing on nitriding steel for high-performance engine applications
,”
Wear
265
(
7–8
),
1046
1051
(
2008
).
180.
H. T.
Wang
,
H.
Zhu
,
Y. K.
Zhou
, and
H. F.
Yang
, “
Experimental study on the friction characteristics of textured steel surface with ring-shaped pits under lubricated sliding conditions
,”
Tribol. Trans.
58
(
4
),
712
717
(
2015
).
181.
K.
Ma
,
Z. W.
Guo
, and
C. Q.
Yuan
, “
Insight into friction and lubrication performances of surface-textured cylinder liners and piston rings
,”
Int. J. Engine Res.
24
(
2
),
408
419
(
2021
).
182.
S.
Kalliadasis
,
C.
Bielarz
, and
G. M.
Homsy
, “
Steady free-surface thin film flows over topography
,”
Phys. Fluids
12
,
1889
1898
(
2000
).
183.
S.
Kalliadasis
and
G. M.
Homsy
, “
Stability of free-surface thin-film flows over topography
,”
J. Fluid Mech.
448
,
387
410
(
2001
).
184.
C.
Bielarz
and
S.
Kalliadasis
, “
Time-dependent free-surface thin film flows over topography
,”
Phys. Fluids
15
,
2512
2524
(
2003
).
185.
J. M.
Davis
and
S. M.
Troian
, “
Generalized linear stability of nonlinear coating flows over topographical features
,”
Phys. Fluids
17
,
072103
(
2005
).
186.
M. M. J.
Decré
and
J. C.
Baret
, “
Gravity-driven flows of low viscosity liquids over two-dimensional topographies
,”
J. Fluid Mech.
487
,
147
166
(
2003
).
187.
A.
Mazouchi
and
G. M.
Homsy
, “
Free surface Stokes flow over topography
,”
Phys. Fluids
13
(
10
),
2751
2761
(
2001
).
188.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
,
931
980
(
1997
).
189.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
(
3
),
1131
1198
(
2009
).
190.
P. H.
Gaskell
,
P. K.
Jimack
,
M.
Sellier
,
H. M.
Thompson
, and
M. C. T.
Wilson
, “
Gravity-driven flow of continuous thin liquid flows on non-porous substrates with topography
,”
J. Fluid Mech.
509
,
253
280
(
2004
).
191.
Y. C.
Lee
,
H. M.
Thompson
, and
P. H.
Gaskell
, “
An efficient adaptive multigrid algorithm for predicting thin film flow on surfaces containing localised topographical features
,”
Comput. Fluids
36
,
838
855
(
2007
).
192.
M.
Sellier
,
Y. C.
Lee
,
H. M.
Thompson
, and
P. H.
Gaskell
, “
Thin film flow on surfaces containing arbitrary occlusions
,”
Comput. Fluids
38
,
171
182
(
2009
).
193.
S.
Veremieiev
,
H. M.
Thompson
, and
P. H.
Gaskell
, “
Inertial thin film flow on planar surfaces featuring topography
,”
Comput. Fluids
39
,
431
450
(
2010
).
194.
S.
Veremieiev
,
H. M.
Thompson
,
Y. C.
Lee
, and
P. H.
Gaskell
, “
Inertial two- and three-dimensional thin film flow over topography
,”
Chem. Eng. Process.
50
(
5–6
),
537
542
(
2011
).
195.
S.
Veremieiev
,
H. M.
Thompson
, and
P. H.
Gaskell
, “
Free-surface film flow over topography: Full three-dimensional finite element solutions
,”
Comput. Fluids
122
,
66
82
(
2015
).
196.
S.
Veremieiev
and
D. H.
Wacks
, “
Modelling gravity-driven film flow on inclined corrugated substrate using a high fidelity weighted residual integral boundary-layer method
,”
Phys. Fluids
31
(
2
),
022101
(
2019
).
197.
S. J. D.
D'Alessio
,
J. P.
Pascal
, and
H. A.
Jasmine
, “
Instability in gravity-driven flow over uneven surfaces
,”
Phys. Fluids
21
(
6
),
062105
(
2009
).
198.
H.
Bonart
,
J.
Jung
, and
J. U.
Repke
, “
On the stability of gravity-driven liquid films overflowing microstructures with sharp corners
,”
Phys. Rev. Fluids
5
(
9
),
094001
(
2020
).
199.
R.
Usha
and
B.
Uma
, “
Modeling of stationary waves on a thin viscous film down an inclined plane at high Reynolds numbers and moderate Weber numbers using energy integral method
,”
Phys. Fluids
16
(
7
),
2679
2696
(
2004
).
200.
S. K.
Pal
,
Y. V. S. S.
Sanyasiraju
, and
R.
Usha
, “
A consistent energy integral model for a film over a substrate featuring topographies
,”
Int. J. Numer. Methods Fluids
93
,
3424
3446
(
2021
).
201.
J.
Davies
and
E.
Rideal
,
Interfacial Phenomena
(
Academic Press
,
1963
).
202.
Y. O.
Kabova
,
A.
Alexeev
,
T.
Gambaryan-Roisman
, and
P.
Stephan
, “
Marangoni-induced deformation and rupture of a liquid film on a heated microstructured wall
,”
Phys. Fluids
18
,
012104
(
2006
).
203.
J. A.
Diez
and
L.
Kondic
, “
Contact line instabilities of thin liquid films
,”
Phys. Rev. Lett.
86
(
4
),
632
635
(
2001
).
204.
T.
Gambaryan-Roisman
and
P.
Stephan
, “
Flow and stability of rivulets on heated surfaces with topography
,”
ASME J. Heat Mass Transfer
131
(
3
),
033101
(
2009
).
205.
N.
Tiwari
and
J. M.
Davis
, “
Stabilization of thin liquid films flowing over locally heated surfaces via substrate topography
,”
Phys. Fluids
22
(
4
),
042106
(
2010
).
206.
L. A.
Davalos-Orozco
, “
Non-linear instability of a thin film flowing down a cooled wavy thick wall of finite thermal conductivity
,”
Phys. Lett. A
379
(
12–13
),
962
967
(
2015
).
207.
J.
Yoo
,
J.
Nam
, and
K. H.
Ahn
, “
Thermocapillary flows on heated substrates with sinusoidal topography
,”
J. Fluid Mech.
859
,
992
1021
(
2019
).
208.
D.
Tseluiko
and
D. T.
Papageorgiou
, “
Wave evolution on electrified falling films
,”
J. Fluid Mech.
556
,
361
386
(
2006
).
209.
D.
Tseluiko
,
M. G.
Blyth
,
D. T.
Papageorgiou
, and
J. M.
Vanden-Broeck
, “
Electrified viscous thin film flow over topography
,”
J. Fluid Mech.
597
,
449
475
(
2008
).
210.
D.
Tseluiko
,
M. G.
Blyth
,
D. T.
Papageorgiou
, and
J. M.
Vanden-Broeck
, “
Viscous electrified film flow over step topography
,”
SIAM J. Appl. Math.
70
,
845
865
(
2009
).
211.
D.
Tseluiko
,
M. G.
Blyth
,
D. T.
Papageorgiou
, and
J. M.
Vanden-Broeck
, “
Electrified film flow over step topography at zero Reynolds number: An analytical and computational study
,”
J. Eng. Math.
69
,
169
183
(
2011
).
212.
B. J.
Binder
and
M. G.
Blyth
, “
Electrified free-surface flow of an inviscid liquid past topography
,”
Phys. Fluids
24
(
10
),
102112
(
2012
).
213.
A.
Ramkrishnan
and
S.
Kumar
, “
Electrohydrodynamic deformation of thin liquid films near surfaces with topography
,”
Phys. Fluids
26
,
122110
(
2014
).
214.
E.
Dubrovina
,
R. V.
Craster
, and
D. T.
Papageorgiou
, “
Two-layer electrified pressure-driven flow in topographically structured channels
,”
J. Fluid Mech.
814
,
222
248
(
2017
).
215.
D. T.
Conroy
,
L.
Espin
,
O. K.
Matar
, and
S.
Kumar
, “
Thermocapillary and electrohydrodynamic effects on the stability of dynamic contact lines
,”
Phys. Rev. Fluids
4
(
3
),
034001
(
2019
).
216.
T.
Min
and
J.
Kim
, “
Effects of hydrophobic surface on skin-friction drag
,”
Phys. Fluids
16
,
L55
L58
(
2004
).
217.
R. Z.
Wenzel
, “
Resistance of solid surfaces to wetting by water
,”
Ind. Eng. Chem.
28
,
988
994
(
1936
).
218.
A. B. D.
Cassie
and
S.
Baxter
, “
Wettability of porous surfaces
,”
Trans. Faraday Soc.
40
,
546
551
(
1944
).
219.
J. P.
Rothstein
, “
Slip on superhydrophobic surfaces
,”
Annu. Rev. Fluid Mech.
42
,
89
109
(
2010
).
220.
D.
Gropper
,
L.
Wang
, and
T. J.
Harvey
, “
Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings
,”
Tribol. Int.
94
,
509
529
(
2016
).
221.
H.
Li
,
Z.
Li
,
X.
Tan
,
X.
Wang
,
S.
Huang
,
Y.
Xiang
,
P.
Lv
, and
H.
Duan
, “
Three-dimensional backflow at liquid-gas interface induced by surfactant
,”
J. Fluid Mech.
899
,
A8
(
2020
).
222.
E.
Lauga
and
H. A.
Stone
, “
Effective slip in pressure-driven Stokes flow
,”
J. Fluid Mech.
489
,
55
77
(
2003
).
223.
E.
Lauga
,
M. P.
Brenner
, and
H. A.
Stone
, “
Microfluidics: The no-slip boundary condition
,” in
Handbook of Experimental Fluid Mechanics
(
Springer Press
,
2007
).
224.
C. L. M. H.
Navier
, “
Memoire sur les lois du mouvement des fluides
,”
Mem. Acad. R. Sci. Inst.
6
,
389
440
(
1823
).
225.
A. V.
Belyaev
and
O. I.
Vinogradova
, “
Effective slip in pressure-driven flow past super-hydrophobic stripes
,”
J. Fluid Mech.
652
,
489
499
(
2010
).
226.
E. S.
Asmolov
and
O. I.
Vinogradova
, “
Effective slip boundary condition for arbitrary one-dimensional surfaces
,”
J. Fluid Mech.
706
,
108
117
(
2012
).
227.
C.
Ybert
,
C.
Barentin
,
C.
Cottin-Bizonne
,
P.
Joseph
, and
L.
Bocquet
, “
Achieving large slip with superhydrophobic surface: Scaling laws for generic geometries
,”
Phys. Fluids
19
,
123601
(
2007
).
228.
A. M. J.
Davis
and
E.
Lauga
, “
Hydrodynamic friction of fakir-like super-hydrophobic surfaces
,”
J. Fluid Mech.
661
,
402
411
(
2010
).
229.
M. B.
Martell
,
J. B.
Perot
, and
J. P.
Rothstein
, “
Direct numerical simulations of turbulent flows over superhydrophobic surfaces
,”
J. Fluid Mech.
620
,
31
41
(
2009
).
230.
M. B.
Martell
,
J. P.
Rothstein
, and
J. B.
Perot
, “
An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation
,”
Phys. Fluids
22
,
065102
(
2010
).
231.
H.
Park
,
H.
Park
, and
J.
Kim
, “
A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow
,”
Phys. Fluids
25
,
110815
(
2013
).
232.
H.
Park
,
G. Y.
Sun
, and
C. J.
Kim
, “
Superhydrophobic turbulent drag reduction as a function of surface grating parameters
,”
J. Fluid Mech.
747
,
722
734
(
2014
).
233.
R. J.
Daniello
,
N. E.
Waterhouse
, and
J. P.
Rothstein
, “
Drag reduction in turbulent flows over superhydrophobic surfaces
,”
Phys. Fluids
21
,
085103
(
2009
).
234.
E.
Aljallis
,
M. A.
Sarshar
,
R.
Dala
,
V.
Sikka
,
A.
Jones
, and
C. H.
Choi
, “
Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow
,”
Phys. Fluids
25
,
025103
(
2013
).
235.
A. K. H.
Chu
, “
Stability of slip flows in a peristaltic transport
,”
Europhys. Lett.
64
,
435
440
(
2003
).
236.
A. K. H.
Chu
, “
Instability of Navier slip flow of liquids
,”
C. R. Mec.
332
,
895
900
(
2004
).
237.
E.
Lauga
and
C.
Cossu
, “
A note on the stability of slip channel flows
,”
Phys. Fluids
17
,
088106
(
2005
).
238.
C. J.
Gan
and
Z. N.
Wu
, “
Short-wave instability due to wall slip and numerical observation of wall-slip instability for microchannel flows
,”
J. Fluid Mech.
550
,
289
306
(
2006
).
239.
K. C.
Sahu
,
A.
Sameen
, and
R.
Govindarajan
, “
The relative role of divergence and velocity slip in the stability of plane channel flow
,”
Eur. Phys. J. Appl. Phys.
44
(
1
),
101
107
(
2008
).
240.
Q. L.
He
and
X. P.
Wang
, “
The effect of the boundary slip on the stability of shear flow
,”
Z. Angew. Math. Mech.
88
(
9
),
729
734
(
2008
).
241.
B.
Straughan
and
A. J.
Harfash
, “
Instability in Poiseuille flow in a porous medium with slip boundary conditions
,”
Microfluid. Nanofluid.
15
(
1
),
109
115
(
2013
).
242.
S.
Ghosh
,
R.
Usha
, and
K. C.
Sahu
, “
Linear stability analysis of miscible two-fluid flow in a channel with velocity slip at the walls
,”
Phys. Fluids
26
(
1
),
014107
(
2014
).
243.
S.
Ghosh
,
R.
Usha
, and
K. C.
Sahu
, “
Absolute and convective instabilities in double-diffusive two-fluid flow in a slippery channel
,”
Chem. Eng. Sci.
134
,
1
11
(
2015
).
244.
C. S.
Chai
and
B. F.
Song
, “
Stability of slip channel flow revisited
,”
Phys. Fluids
31
,
084105
(
2019
).
245.
K. W.
Chen
and
B. F.
Song
, “
Linear stability of slip pipe flow
,”
J. Fluid Mech.
910
,
A35
(
2021
).
246.
X. M.
Xiong
and
J. J.
Tao
, “
Linear stability and energy stability of plane Poiseuille flow with isotropic and anisotropic slip boundary conditions
,”
Phys. Fluids
32
(
9
),
094104
(
2020
).
247.
Y.
Xiao
,
L. S.
Zhang
, and
J. J.
Tao
, “
Slip boundary effect on the critical Reynolds number of subcritical transition in channel flow
,”
Theor. Appl. Mech. Lett.
13
(
2
),
100431
(
2023
).
248.
S.
Zou
,
B.
Lin
,
C. W.
Zhong
,
X. X.
Yuan
, and
Z. G.
Tang
, “
A novel linear stability analysis method for plane Couette flow considering rarefaction effects
,”
J. Fluid Mech.
963
,
A33
(
2023
).
249.
T.
Min
and
J.
Kim
, “
Effects of hydrophobic surface on stability and transition
,”
Phys. Fluids
17
,
108106
(
2005
).
250.
J. M.
Gersting
, “
Hydrodynamic stability of plane porous slip flow
,”
Phys. Fluids
17
,
2126
2127
(
1974
).
251.
A.
Spille
,
A.
Rauh
, and
H.
Bühring
, “
Critical curves of plane Poiseuille flow with slip boundary conditions
,”
Nonlinear Phenom. Complex Syst.
3
,
171
173
(
2000
).
252.
M. T.
Matthews
and
J. M.
Hill
, “
Effect of slip on the linear stability of flow through a tube
,”
Z. Angew. Math. Phys.
59
,
360
379
(
2008
).
253.
K. H.
Yu
,
C. J.
Teo
, and
B. C.
Khoo
, “
Linear stability of pressure-driven flow over longitudinal superhydrophobic grooves
,”
Phys. Fluids
28
,
022001
(
2016
).
254.
J. O.
Pralits
,
E.
Alinovi
, and
A.
Bottaro
, “
Stability of the flow in a plane microchannel with one or two superhydrophobic walls
,”
Phys. Rev. Fluids
2
(
1
),
013901
(
2017
).
255.
E.
Alinovi
, “
Modelling the flow over superhydrophobic and liquid-impregnated surfaces
,” Ph.D. dissertation (
DICCA, University of Genova
,
2018
).
256.
S.
Ceccacci
,
S. A. W.
Calabretto
,
C.
Thomas
, and
J. P.
Denier
, “
The linear stability of slip channel flows
,”
Phys. Fluids
34
,
074103
(
2022
).
257.
F.
Picella
,
J. C.
Robinet
, and
S.
Cherubini
, “
Laminar-turbulent transition in channel flow with superhydrophobic surfaces modelled as a partial slip wall
,”
J. Fluid Mech.
881
,
462
497
(
2019b
).
258.
F.
Picella
,
J. C.
Robinet
, and
S.
Cherubini
, “
On the influence of the modelling of superhydrophobic surfaces on laminar-turbulent transition
,”
J. Fluid Mech.
901
,
A15
(
2020
).
259.
X. Y.
Zhai
,
K. W.
Chen
, and
B. F.
Song
, “
Linear instability of channel flow with microgroove-type anisotropic superhydrophobic walls
,”
Phys. Rev. Fluids
8
,
023901
(
2023
).
260.
D. T.
Gethin
,
M. M. H. M.
Ahmad
,
T. C.
Claypole
, and
B. J.
Roylance
, “
Numerical and experimental investigation into porous squeeze films
,”
Tribol. Int.
31
,
189
199
(
1998
).
261.
N. M.
Bujurke
and
N. B.
Naduvinamani
, “
A note on squeeze film between rough anisotropic porous rectangular plates
,”
Wear
217
,
225
230
(
1998
).
262.
N.
Tilton
and
L.
Cortelezzi
, “
Linear stability analysis of pressure-driven flows in channels with porous walls
,”
J. Fluid Mech.
604
,
411
445
(
2008
).
263.
B.
Goyeau
,
D.
Lhuillier
,
D.
Gobin
, and
M. G.
Velarde
, “
Momentum transport at a fluid-porous interface
,”
Int. J. Heat Mass Transfer
46
(
21
),
4071
4081
(
2003
).
264.
G. S.
Beavers
and
D. D.
Joseph
, “
Boundary conditions at a naturally permeable wall
,”
J. Fluid Mech.
30
(
1
),
197
207
(
1967
).
265.
P.
Saffman
, “
On the boundary condition at the surface of a porous medium
,”
Stud. Appl. Math.
50
,
93
101
(
1971
).
266.
M. L.
Bars
and
M. G.
Worster
, “
Interfacial conditions between a pure fluid and a porous medium: Implications for binary alloy solidification
,”
J. Fluid Mech.
550
,
149
173
(
2006
).
267.
F.
Valdéa-Parada
,
B.
Goyeau
, and
J.
Ochoa-Tapia
, “
Jump momentum boundary condition at a fluid-porous dividing surface: Derivation of the closure problem
,”
Chem. Eng. Sci.
62
,
4025
4039
(
2007
).
268.
U.
Lācis
and
S.
Bagheri
, “
A framework for computing effective boundary conditions at the interface between free fluid and a porous medium
,”
J. Fluid Mech.
812
,
866
889
(
2017
).
269.
M. E.
Rosti
,
L.
Cortelezzi
, and
M.
Quadrio
, “
Direct numerical simulation of turbulent channel flow over porous walls
,”
J. Fluid Mech.
784
,
396
442
(
2015
).
270.
S. C.
Hirata
,
B.
Goyeau
,
D.
Gobin
,
M.
Carr
, and
R. M.
Cotta
, “
Linear stability of natural convection in superposed fluid and porous layers: Influence of the interfacial modelling
,”
Int. J. Heat Mass Transfer
50
(
7–8
),
1356
1367
(
2007
).
271.
A.
Samanta
, “
Nonmodal and modal analyses of a flow through inhomogeneous and anisotropic porous channel
,”
Int. J. Multiphase Flow
157
,
104230
(
2022
).
272.
M.-H.
Chang
,
F.
Chen
, and
B.
Straughan
, “
Instability of Poiseuille flow in a fluid overlying a porous layer
,”
J. Fluid Mech.
564
,
287
303
(
2006
).
273.
A. A.
Hill
and
B.
Straughan
, “
Poiseuille flow in a fluid overlying a porous medium
,”
J. Fluid Mech.
603
,
137
149
(
2008
).
274.
R.
Liu
,
Q. S.
Liu
, and
S. C.
Zhao
, “
Instability of plane Poiseuille flow in a fluid-porous system
,”
Phys. Fluids
20
,
104105
(
2008
).
275.
Z.
Wu
and
P.
Mirbod
, “
Instability analysis of the flow between two parallel plates where the bottom one coated with porous media
,”
Adv. Water Resour.
130
,
221
228
(
2019
).
276.
M. H.
Chang
, “
Thermal convection in superposed fluid and porous layers subjected to a horizontal plane Couette flow
,”
Phys. Fluids
17
,
064106
(
2005
).
277.
C.
Yin
,
J.
Niu
,
C. J.
Fu
, and
W. C.
Tan
, “
Thermal convection of a viscoelastic fluid in a fluid-porous system subjected to a horizontal plane Couette flow
,”
Int. J. Heat Fluid Flow
44
,
711
718
(
2013
).
278.
P. D.
Antoniadis
and
M. V.
Papalexandris
, “
Dynamics of shear layers at the interface of a highly porous medium and a pure fluid
,”
Phys. Fluids
27
,
014104
(
2015
).
279.
T.-Y.
Chang
,
F.
Chen
, and
M.-H.
Chang
, “
Stability of plane Poiseuille-Couette flow in a fluid layer overlying a porous layer
,”
J. Fluid Mech.
826
,
376
395
(
2017
).
280.
A.
Samanta
, “
Linear stability of a plane Couette-Poiseuille flow overlying a porous layer
,”
Int. J. Multiphase Flow
123
,
103160
(
2020
).
281.
K. S.
Kirthy
and
S. S.
Diwan
, “
Energy budget analysis and neutral curve characteristics for the linear instability of Couette-Poiseuille flow
,”
Phys. Fluids
33
,
034102
(
2021
).
282.
S.
Hooshyar
,
H. N.
Yoshikawa
, and
P.
Mirbod
, “
The impact of imposed Couette flow on the stability of pressure-driven flows over porous surfaces
,”
J. Eng. Math.
132
(
1
),
15
(
2022
).
283.
K.
Suga
,
Y.
Nakagawa
, and
M.
Kaneda
, “
Spanwise turbulence structure over permeable walls
,”
J. Fluid Mech.
822
,
186
201
(
2017
).
284.
F.
Chen
and
C. F.
Chen
, “
Onset of finger convection in a horizontal porous layer underlying a fluid layer
,”
ASME J. Heat Mass Transfer
110
,
403
409
(
1988
).
285.
F. W.
Xie
,
J.
Zhu
,
J. Z.
Cui
,
X. D.
Zheng
,
X. J.
Guo
,
Y.
Wang
, and
R. K.
Agarwal
, “
Dynamic transmission of oil film in soft-start process of HVD considering surface roughness
,”
Ind. Lubr. Tribol.
70
(
3
),
463
473
(
2018
).
286.
A. A.
Abdel-Rahman
and
W. M.
Chakroun
, “
Surface roughness effects on flow aerofoils
,”
Wind Eng.
21
(
3
),
125
137
(
1997
).
287.
P.
Carpenter
, “
The right sort of roughness
,”
Nature
388
(
6644
),
713
714
(
1997
).
288.
D.
Fernando
,
S.
Gao
, and
S. J.
Garrett
, “
The effect of surface roughness on rotor-stator cavity flows
,”
Phys. Fluids
30
,
064103
(
2018
).
289.
M.
Kadivar
,
D.
Tormey
, and
G.
McGranaghan
, “
A review on turbulent flow over rough surfaces: Fundamentals and theories
,”
Int. J. Thermofluids
10
,
100077
(
2021
).
290.
E.
Reshotko
and
A.
Tumin
, “
Role of transient growth in roughness-induced transition
,”
AIAA J.
42
(
4
),
766
770
(
2004
).
291.
T.
Watanabe
,
H. M.
Warui
, and
N.
Fujisawa
, “
Effect of distributed roughness on laminar-turbulent transition in the boundary layer over a rotating cone
,”
Exp. Fluids
14
,
390
392
(
1993
).
292.
J. M.
Floryan
, “
Stability of wall-bounded shear layers in the presence of simulated distributed surface roughness
,”
J. Fluid Mech.
335
,
29
55
(
1997
).
293.
F.
Zoueshtiagh
,
R.
Ali
,
A. J.
Colley
,
P. J.
Thomas
, and
P. W.
Carpenter
, “
Laminar-turbulent boundary-layer transition over a rough rotating disk
,”
Phys. Fluids
15
(
8
),
2441
2444
(
2003
).
294.
A. J.
Colley
,
P.
Carpenter
,
P. J.
Thomas
,
R.
Ali
, and
F.
Zoueshtiagh
, “
Experimental verification of the type Π eigenmode destabilization in the boundary layer over a compliant rotating disk
,”
Phys. Fluids
18
,
054107
(
2006
).
295.
M.
Bernardini
,
S.
Pirozzoli
, and
P.
Orlandi
, “
Compressibility effects on roughness-induced boundary layer transition
,”
Int. J. Heat Fluid Flow
35
,
45
51
(
2012
).
296.
Y.
Shin
,
U.
Rist
, and
E.
Krämer
, “
Stability of the laminar boundary-layer flow behind a roughness element
,”
Exp. Fluids
56
(
1
),
1
18
(
2015
).
297.
D. K.
Puckert
and
U.
Rist
, “
Experiments on critical Reynolds number and global instability in roughness-induced laminar-turbulent transition
,”
J. Fluid Mech.
844
,
878
903
(
2018
).
298.
T. C.
Corke
,
A.
Bar-Sever
, and
M. V.
Morkovin
, “
Experiments on transition enhancement by distributed roughness
,”
Phys. Fluids
29
(
10
),
3199
3213
(
1986
).
299.
E.
Reshotko
, “
Transient growth: A factor in bypass transition
,”
Phys. Fluids
13
(
5
),
1067
1075
(
2001
).
300.
S.
Muppidi
and
K.
Mahesh
, “
Direct numerical simulations of roughness-induced transition in supersonic boundary layers
,”
J. Fluid Mech.
693
,
28
56
(
2012
).
301.
J. C.
Loiseau
,
J. C.
Robinet
,
S.
Cherubini
, and
E.
Leriche
, “
Investigation of the roughness-induced transition: Global stability analyses and direct numerical simulations
,”
J. Fluid Mech.
760
,
175
211
(
2014
).
302.
R.
Ma
and
K.
Mahesh
, “
Global stability analysis and direct numerical simulation of boundary layers with isolated roughness element
,”
J. Fluid Mech.
949
,
A12
(
2022
).
303.
N. R.
Vadlamani
,
P. G.
Tucker
, and
P.
Durbin
, “
Distributed roughness effects on transitional and turbulent boundary layers
,”
Flow Turbul. Combust.
100
(
3
),
627
649
(
2018
).
304.
L. H.
von Deyn
,
P.
Forooghi
,
B.
Frohnapfel
,
P.
Schlatter
,
A.
Hanifi
, and
D. S.
Henningson
, “
Direct numerical simulations of bypass transition over distributed roughness
,”
AIAA J.
58
(
2
),
702
711
(
2020
).
305.
M.
Miklavčič
and
C.
Wang
, “
The flow due to a rough rotating disk
,”
Z. Angew. Math. Phys.
55
,
235
246
(
2004
).
306.
A. J.
Cooper
,
J. H.
Harris
,
S. J.
Garrett
,
M.
Özkan
, and
P. J.
Thomas
, “
The effect of anisotropic and isotropic roughness on the convective stability of the rotating disk boundary layer
,”
Phys. Fluids
27
,
014107
(
2015
).
307.
M. S.
Yoon
,
J. M.
Hyun
, and
J. S.
Park
, “
Flow and heat transfer over a rotating disk with surface roughness
,”
Int. J. Heat Fluid Flow
28
(
2
),
262
267
(
2007
).
308.
S. J.
Garrette
,
A. J.
Cooper
,
J. H.
Harris
,
M.
Özkan
,
A.
Segalini
, and
P. J.
Thomas
, “
On the stability of von Kármán rotating-disk boundary layers with radial anisotropic surface roughness
,”
Phys. Fluids
28
(
1
),
014104
(
2016
).
309.
B.
Alveroglu
,
A.
Segalini
, and
S. J.
Garrette
, “
The effect of surface roughness on the convective instability of the BEK family of boundary-layer flows
,”
Eur. J. Mech. B
56
,
178
187
(
2016
).
310.
A. A.
Alqarni
,
B.
Alveroglu
,
P. T.
Griffiths
, and
S. J.
Garrett
, “
The instability of non-Newtonian boundary-layer flows over rough rotating disks
,”
J. Non-Newtonian Fluid Mech.
273
,
104174
(
2019
).
311.
B.
Alveroglu
,
A.
Segalini
, and
S. J.
Garrette
, “
An energy analysis of convective instabilities of the Bödewadt and Ekman boundary layers over rough surfaces
,”
Eur. J. Mech. B
61
,
310
315
(
2017
).
312.
M. A. S.
Al-Malki
,
S. J.
Garrett
,
S.
Camarri
, and
Z.
Hussain
, “
The effects of roughnesss levels on the instability of the boundary-layer flow over a rotating disk with an enforced axial flow
,”
Phys. Fluids
33
(
10
),
104109
(
2021
).
313.
M. A. S.
Al-Malki
,
M.
Fildes
, and
Z.
Hussain
, “
Competing roughness effects on the non-stationary crossflow instability of the boundary-layer over a rotating broad cone
,”
Phys. Fluids
34
(
10
),
104103
(
2022
).
314.
H. S.
Gong
,
H. B.
Xie
,
L.
Hu
, and
H. Y.
Yang
, “
Combined effects of Coriolis force and temperature-viscosity dependency on hydro-viscous transmission of rotating parallel disks
,”
Tribol. Int.
117
,
168
173
(
2018
).
315.
A.
Costa
and
G.
Macedonio
, “
Viscous heating effects in fluids with temperature-dependent viscosity: Triggering of secondary flows
,”
J. Fluid Mech.
540
,
21
38
(
2005
).
316.
K. C.
Sahu
and
O. K.
Matar
, “
Stability of plane channel flow with viscous heating
,”
ASME J. Fluids Eng.
132
(
1
),
011202
(
2010
).
317.
D. D.
Joseph
, “
Variable viscosity effects on the flow and stability of flow in channel and pipes
,”
Phys. Fluids
7
,
1761
1771
(
1964
).
318.
P. C.
Sukanek
,
R. L.
Goldstein
, and
R. L.
Laurence
, “
The stability of plane Couette flow with viscous heating
,”
J. Fluid Mech.
57
,
651
670
(
1973
).
319.
C. S.
Yueh
and
C. I.
Weng
, “
Linear stability analysis of plane Couette flow with viscous heating
,”
Phys. Fluids
8
(
7
),
1802
1813
(
1996
).
320.
N. T. M.
Eldabe
,
M. F.
El-Sabbagh
, and
M. A. S.
El-Sayed
, “
The stability of plane Couette flow of a power-law fluid with viscous heating
,”
Phys. Fluids
19
,
094107
(
2007
).
321.
D. P.
Wall
and
S. K.
Wilson
, “
The linear stability of channel flow of fluid with temperature-dependent viscosity
,”
J. Fluid Mech.
323
,
107
132
(
1996
).
322.
D. P.
Wall
and
S. K.
Wilson
, “
The linear stability of flat-plate boundary-layer flow of fluid with temperature-dependent viscosity
,”
Phys. Fluids
9
(
10
),
2885
2898
(
1997
).
323.
D. P.
Wall
and
M.
Nagata
, “
Nonlinear equilibrium solutions for channel flow of fluid with temperature-dependent viscosity
,”
J. Fluid Mech.
406
,
1
26
(
2000
).
324.
R.
Govindarajan
,
V. S.
L'vov
,
I.
Procaccia
, and
A.
Sameen
, “
Stabilization of hydrodynamic flows by small viscosity variations
,”
Phys. Rev. E
67
,
026310
(
2003
).
325.
H. A.
Jasmine
and
J. S. B.
Gajjar
, “
Absolute and convective instabilities in the incompressible boundary layer on a rotating disk with temperature-dependent viscosity
,”
Int. J. Heat Mass Transfer
48
,
1022
1037
(
2005
).
326.
R.
Miller
,
P. T.
Griffiths
,
Z.
Hussain
, and
S. J.
Garrett
, “
On the stability of a heated rotating-disk boundary layer in a temperature-dependent viscosity fluid
,”
Phys. Fluids
32
,
024105
(
2020
).
327.
A.
Sameen
and
R.
Govindarajan
, “
The effect of wall heating on instability of channel flow
,”
J. Fluid Mech.
577
,
417
442
(
2007
).
328.
H.
Srivastava
,
A.
Dalal
,
K. C.
Sahu
, and
G.
Biswas
, “
Temporal linear stability analysis of an entry flow in a channel with viscous heating
,”
Int. J. Heat Mass Transfer
109
,
922
929
(
2017
).
329.
W. T.
Wu
and
M.
Massoudi
, “
Recent advances in mechanics of non-Newtonian fluids
,”
Fluids
5
(
1
),
10
(
2020
).
330.
H. I.
Andersson
,
E.
De Korte
, and
R.
Meland
, “
Flow of a power-law fluid over a rotating disk revisited
,”
Fluid Dyn. Res.
28
(
2
),
75
88
(
2001
).
331.
A.
Pinarbasi
and
C.
Ozalp
, “
Effect of viscous models on the stability of a Non-Newtonian fluid in a channel with heat transfer
,”
Int. Commun. Heat Mass Transfer
28
(
3
),
369
378
(
2001
).
332.
A.
Pinarbasi
and
M.
Imal
, “
Viscous heating effects on the linear stability of Poiseuille flow of an inelastic fluid
,”
J. Non-Newtonian Fluid Mech.
127
,
67
71
(
2005
).
333.
C.
Nouar
and
I.
Frigaard
, “
Delaying transition to turbulence in channel flow: Revisiting the stability of shear-thinning fluids
,”
J. Fluid Mech.
592
,
177
194
(
2007
).
334.
R.
Liu
and
Q. S.
Liu
, “
Non-modal instability in plane Couette flow of a power-law fluid
,”
J. Fluid Mech.
676
,
145
171
(
2011
).
335.
C.
Nouar
and
I.
Frigaard
, “
Stability of plane Couette-Poiseuille flow of shear-thinning fluid
,”
Phys. Fluids
21
,
064104
(
2009
).
336.
C. Y.
Ming
,
L. C.
Zheng
, and
X. X.
Zhang
, “
Steady flow and heat transfer of the power-law fluid over a rotating disk
,”
Int. Commun. Heat Mass Transfer
38
(
3
),
280
284
(
2011
).
337.
C. Y.
Ming
,
L. C.
Zheng
,
X. X.
Zhang
,
F. W.
Liu
, and
V.
Anh
, “
Flow and heat transfer of power-law fluid over a rotating disk with generalized diffusion
,”
Int. Commun. Heat Mass Transfer
79
,
81
88
(
2016
).
338.
P. T.
Griffiths
,
S. O.
Stephen
,
A. P.
Bassom
, and
S. J.
Garrett
, “
Stability of the boundary layer on a rotating disk for pow law fluids
,”
J. Non-Newtonian Fluid Mech.
207
,
1
6
(
2014
).
339.
M. A.
Abdulameer
,
P. T.
Griffiths
,
B.
Alveroglu
, and
S. J.
Garrett
, “
On the stability of the BEK family of rotating boundary-layer flows for power-law fluids
,”
J. Non-Newtonian Fluid Mech.
236
,
63
72
(
2016
).
340.
Usman
,
P.
Lin
, and
A.
Ghaffari
, “
Steady flow and heat transfer of the power-law fluid between two stretchable rotating disks with non-uniform heat source/sink
,”
J. Therm. Anal. Calorim.
146
(
4
),
1735
1749
(
2021
).
341.
T. H.
Zhao
,
M. I.
Khan
, and
Y. M.
Chu
, “
Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks
,”
Math. Methods Appl. Sci.
46
(
3
),
3012
3030
(
2021
).
342.
J.
Peng
and
K. Q.
Zhu
, “
Linear stability of Bingham fluids in spiral Couette flow
,”
J. Fluid Mech.
512
,
21
45
(
2004
).
343.
M. P.
Landry
,
I. A.
Frigaard
, and
D. M.
Martinez
, “
Stability and instability of Taylor-Couette flows of a Bingham fluid
,”
J. Fluid Mech.
560
,
321
353
(
2006
).
344.
C.
Nouar
,
N.
Kabouya
,
J.
Dusek
, and
M.
Mamou
, “
Modal and non-modal linear stability of the plane Bingham-Poiseuille flow
,”
J. Fluid Mech.
577
,
211
239
(
2007
).
345.
A.
Ahmadpour
and
K.
Sadeghy
, “
Swirling flow of Bingham fluids above a rotating disk: An exact solution
,”
J. Non-Newtonian Fluid Mech.
197
,
41
47
(
2013
).
346.
M.
Mustafa
,
M.
Tabassum
, and
M.
Rahi
, “
Second law analysis of heat transfer in swirling flow of Bingham fluid by a rotating disk subjected to suction effect
,”
Therm. Sci.
25
(
1
),
13
24
(
2021
).
347.
M. K.
Alam
,
K.
Bibi
,
A.
Khan
, and
S.
Noeiaghdam
, “
Dufour and Soret effect on viscous fluid flow between squeezing plates under the influence of variable magnetic field
,”
Mathematics
9
(
19
),
2404
(
2021
).
348.
P.
Jayavel
,
R.
Katta
, and
R. K.
Lodhi
, “
Numerical analysis of electromagnetic squeezing flow through a parallel porous medium plate with impact of suction/injection
,”
Waves Random Complex Media
2022
,
1
24
.
349.
T. V. V. L. N.
Rao
and
J. T.
Sawicki
, “
Linear stability analysis for a hydrodynamic journal bearing considering cavitation effects
,”
Tribol. Trans.
45
(
4
),
450
456
(
2002
).
350.
T. V. V. L. N.
Rao
and
J. T.
Sawicki
, “
Stability analysis for a rough journal bearing considering cavitation effects
,”
ASME J. Tribol.
127
(
1
),
112
119
(
2005
).
351.
J. Z.
Cui
,
F. W.
Xie
, and
C. T.
Wang
, “
Numerical investigation on thermal deformation behavior of friction pair in hydro-viscous drive
,”
Appl. Therm. Eng.
90
,
460
470
(
2015
).
352.
M.
Ledinegg
, “
Instability of flow during natural and forced circulation
,”
Die Wärme
61
(
8
),
891
898
(
1938
).
353.
R.
Stelling
,
E. V.
McAssey
,
T.
Dougherty
, and
B. W.
Yang
, “
The onset of flow instability for downward flow in vertical channels
,”
ASME J. Heat Transfer
118
(
3
),
709
714
(
1996
).
354.
L. E.
O'Neill
and
I.
Mudawar
, “
Review of two-phase flow instabilities in macro- and micro-channel systems
,”
Int. J. Heat Mass Transfer
157
,
119738
(
2020
).
355.
G. H.
Yeoh
,
J. Y.
Tu
, and
Y.
Li
, “
On void fraction distribution during two-phase boiling flow instability
,”
Int. J. Heat Mass Transfer
47
(
2
),
413
417
(
2004
).
356.
J. F.
Wang
,
Y. P.
Huang
, and
Y. L.
Wang
, “
Visualized study on specific points on demand curves and flow patterns in a single-side heated narrow rectangular channel
,”
Int. J. Heat Fluid Flow
32
(
5
),
982
992
(
2011
).
357.
J.
Lee
,
H.
Chae
, and
S. H.
Chang
, “
Flow instability during subcooled boiling for a downward flow at low pressure in a vertical narrow rectangular channel
,”
Int. J. Heat Mass Transfer
67
,
1170
1180
(
2013
).
358.
O. S.
Al-Yahia
and
D.
Jo
, “
ONB, OSV, and OFI for subcooled flow boiling through a narrow rectangular channel heated on one-side
,”
Int. J. Heat Mass Transfer
116
,
136
151
(
2018
).
359.
Q.
Lu
,
Y.
Zhang
,
Y.
Liu
,
L. L.
Zhou
,
C. F.
Shen
, and
D. Q.
Chen
, “
An experimental investigation on the characteristics of flow instability with the evolution of two-phase interface morphology
,”
Int. J. Heat Mass Transfer
138
,
468
482
(
2019
).
360.
D.
Brutin
,
F.
Topin
, and
L.
Tadrist
, “
Experimental study of unsteady convective boiling in heated minichannels
,”
Int. J. Heat Mass Transfer
46
,
2957
2965
(
2003
).
361.
D.
Brutin
and
L.
Tadrist
, “
Pressure drop and heat transfer analysis of flow boiling in a minichannel: Influence of the inlet condition on two-phase flow stability
,”
Int. J. Heat Mass Transfer
47
,
2365
2377
(
2004
).
362.
G.
Wang
,
P.
Cheng
, and
H.
Wu
, “
Unstable and stable flow boiling in parallel microchannels and in a single microchannel
,”
Int. J. Heat Mass Transfer
50
,
4297
4310
(
2007
).
363.
G.
Wang
and
P.
Cheng
, “
An experimental study of flow boiling instability in a single microchannel
,”
Int. Commun. Heat Mass Transfer
35
,
1229
1234
(
2008
).
364.
J.
Barber
,
K.
Sefiane
,
D.
Brutin
, and
L.
Tadrist
, “
Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel
,”
Appl. Therm. Eng.
29
(
7
),
1299
1308
(
2009
).
365.
G. P.
Celata
,
S. K.
Saha
,
G.
Zummo
, and
D.
Dossevi
, “
Heat transfer characteristics of flow boiling in a single horizontal microchannel
,”
Int. J. Therm. Sci.
49
,
1086
1094
(
2010
).
366.
Y. F.
Fan
and
I.
Hassan
, “
Experimental investigation of flow boiling instability in a single horizontal microtube with and without inlet restriction
,”
ASME J. Heat Mass Transfer
134
(
8
),
081501
(
2012
).
367.
H.
He
,
P. F.
Li
,
R. G.
Yan
, and
L. M.
Pan
, “
Modeling of reversal flow and pressure fluctuation in rectangular microchannel
,”
Int. J. Heat Mass Transfer
102
,
1024
1033
(
2016
).
368.
H. Z.
Li
and
P.
Hrnjak
, “
Modeling of bubble dynamics in single diabatic microchannel
,”
Int. J. Heat Mass Transfer
107
,
96
104
(
2017
).
369.
L. C.
Ruspini
,
C. P.
Marcel
, and
A.
Clausse
, “
Two-phase flow instabilities: A review
,”
Int. J. Heat Mass Transfer
71
,
521
548
(
2014
).
370.
J.
Maulbetsch
and
P.
Griffith
, “
System induced instabilities in forced-convection flows with subcooled boiling
,”
Int. Heat Transfer Conf.
3
(
7–12
),
247
257
(
1966
).
371.
H.
Yuncu
, “
An experimental and theoretical study of density wave and pressure drop oscillations
,”
Heat Transfer Eng.
11
(
3
),
45
56
(
1990
).
372.
W. L.
Qu
and
I.
Mudawar
, “
Measurement and prediction of pressure drop in two-phase micro-channel heat sinks
,”
Int. J. Heat Mass Transfer
46
(
15
),
2737
2753
(
2003
).
373.
C.
Huh
,
J.
Kim
, and
M. H.
Kim
, “
Flow pattern transition instability during flow boiling in a single microchannel
,”
Int. J. Heat Mass Transfer
50
(
5–6
),
1049
1060
(
2007
).
374.
T. J.
Zhang
,
Y.
Peles
,
J. T.
Wen
,
T.
Tong
,
J. Y.
Chang
,
R.
Prasher
, and
M. K.
Jensen
, “
Analysis and active control of pressure-drop flow instabilities in boiling microchannel systems
,”
Int. J. Heat Mass Transfer
53
(
11–12
),
2347
2360
(
2010
).
375.
Y.
Kuang
,
W.
Wang
,
J.
Miao
,
X.
Yu
, and
R.
Zhuan
, “
Theoretical analysis and modeling of flow instability in a mini-channel evaporator
,”
Int. J. Heat Mass Transfer
104
,
149
162
(
2017
).
376.
K. H.
Chang
and
C.
Pan
, “
Two-phase flow instability for boiling in a microchannel heat sink
,”
Int. J. Heat Mass Transfer
50
(
11–12
),
2078
2088
(
2007
).
377.
T. L.
Chen
and
S. V.
Garimella
, “
Local heat transfer distribution and effect of instabilities during flow boiling in a silicon microchannel heat sink
,”
Int. J. Heat Mass Transfer
54
(
15–16
),
3179
3190
(
2011
).
378.
Z. R.
Jiang
,
Z. Y.
Ma
,
R. G.
Yan
,
L. T.
Zhang
,
W.
Sun
,
S. S.
Bu
, and
L. M.
Pan
, “
Experimental study on the flow boiling oscillation characteristics in a rectangular multiple micro-channel
,”
Exp. Therm. Fluid Sci.
109
,
109902
(
2019
).
379.
B.
Wang
,
Y. W.
Hu
,
Y. R.
He
,
N.
Rodionov
, and
J. Q.
Zhu
, “
Dynamic instabilities of flow boiling in micro-channels: A review
,”
Appl. Therm. Eng.
214
,
118773
(
2022
).
380.
L.
Cao
,
S.
Kakac
,
H.
Liu
, and
P.
Sarma
, “
Theoretical analysis of pressure-drop type instabilities in an upflow boiling system with an exit restriction
,”
Heat Mass Transfer
37
,
475
483
(
2001
).
381.
Q.
Jin
,
J. T.
Wen
, and
S.
Narayanan
, “
Characteristics of pressure drop oscillation in a microchannel cooling system
,”
Appl. Therm. Eng.
160
,
113849
(
2019
).
382.
Q.
Jin
,
J. T.
Wen
, and
S.
Narayanan
, “
The analysis and prediction of pressure drop oscillation in phase-change cooling systems
,”
Int. J. Heat Mass Transfer
165
,
120621
(
2021
).
383.
C. J.
Kuo
and
Y.
Peles
, “
Pressure effects on flow boiling instabilities in parallel microchannels
,”
Int. J. Heat Mass Transfer
52
,
271
280
(
2009
).
You do not currently have access to this content.