Arc discharge plasma (ADP) technology can be applied to disperse easily aggregated materials, such as the carbon nanotubes and Fe3O4. To investigate the evolution of the plasma arc channel and particle dispersion effect during the ADP process, a coupled electrode–plasma channel–workpiece (Fe3O4 clusters) and particle dispersion heat transfer model was established. The simulation results exhibited that the plasma arc formed at 0.05 s acted on the workpiece surface, forming a conical bottle-shaped structure with a wide arc column near the workpiece region and a narrow arc column near the electrode region due to the plasma column–workpiece interaction. With the continuous discharge, a discharge crater was formed on the workpiece surface due to the thermal-pressing effect of the plasma arc, and the dynamic pressure exerted by the arc column on the workpiece center increased continuously, driving the dispersion of the particles. In addition, ADP dispersion experiments were carried out on Fe3O4 to verify the simulation results. The experimental results showed that the morphologies of plasma arc channel evolution and discharge crater agreed with the simulation results. Moreover, the Fe3O4 particles dispersed by the ADP showed good dispersion morphology, which will further promote the spread of ADP technology in the dispersion and application of materials.

1.
J. B.
Liu
,
F.
Jiang
,
B.
Xu
,
G. K.
Zhang
, and
S. J.
Chen
, “
Physical mechanism of material flow and temperature distribution in keyhole plasma arc welding at initial unstable stage
,”
Phys. Fluids
35
,
033115
(
2023
).
2.
S.
Li
,
C.
Zhang
,
J.
Fu
,
Y.
Zhou
,
J.
Sun
,
Y.
He
,
F.
Nan
, and
Z.
Yu
, “
Interfacial modification of carbon fiber by carbon nanotube gas-phase dispersion
,”
Compos. Sci. Technol.
195
,
108196
(
2020
).
3.
Y.
Li
,
Z.
Yun
,
X.
Zhou
, and
C. S.
Wu
, “
Theoretically more accurate magnetic method to calculate arc welding process
,”
Phys. Fluids
35
,
067105
(
2023
).
4.
Y.
Li
,
Z.
Yun
,
X.
Zhou
, and
C. S.
Wu
, “
Fundamental understanding of open keyhole effect in plasma arc welding
,”
Phys. Fluids
35
,
043316
(
2023
).
5.
L.
Kumaresan
,
G.
Shanmugavelayutham
, and
P.
Saravanan
, “
Single-phase ferromagnetic iron nitride (ε-Fe3N) nanoparticles synthesized by thermal plasma method for oxygen evolution and supercapacitor applications
,”
Appl. Phys. A
128
,
1073
(
2022
).
6.
J.
Li
,
H.
Wang
,
H.
Chen
,
H.
Wu
,
G.
Xu
,
Y.
Dong
,
Q.
Zhao
, and
T.
Liu
, “
Comparative thermodynamic and techno-economic analysis of various medical waste-to-hydrogen/methanol pathways based on plasma gasification
,”
Appl. Therm. Eng.
221
,
119762
(
2023
).
7.
J. P.
Trelles
, “
Finite element methods for arc discharge simulation
,”
Plasma Processes Polym.
14
,
1600092
(
2017
).
8.
R.
Feng
,
Z.
Wang
,
M.
Sun
,
H.
Wang
,
Y.
Huang
,
Y.
Yang
,
X.
Liu
,
C.
Wang
,
Y.
Tian
,
T.
Luo
, and
J.
Zhu
, “
Multi-channel gliding arc plasma-assisted ignition in a kerosene-fueled model scramjet engine
,”
Aerosp. Sci. Technol.
126
,
107606
(
2022
).
9.
V.
Kolobov
and
V.
Godyak
, “
Electron kinetics in low-temperature plasmas
,”
Phys. Plasmas
26
,
060601
(
2019
).
10.
W.
Ming
,
S.
Zhang
,
G.
Zhang
,
J.
Du
,
J.
Ma
,
W.
He
,
C.
Cao
, and
K.
Liu
, “
Progress in modeling of electrical discharge machining process
,”
Int. J. Heat Mass Transfer
187
,
122563
(
2022
).
11.
H.
Xia
,
M.
Kunieda
, and
N.
Nishiwaki
, “
Removal amount difference between anode and cathode in EDM process
,”
Int. J. Electr. Mach.
1
,
45
52
(
1996
).
12.
H.
Singh
, “
Experimental study of distribution of energy during EDM process for utilization in thermal models
,”
Int. J. Heat Mass Transfer
55
,
5053
5064
(
2012
).
13.
Y.
Zhang
,
Y.
Liu
,
Y.
Shen
,
Z.
Li
,
R.
Ji
, and
B.
Cai
, “
A novel method of determining energy distribution and plasma diameter of EDM
,”
Int. J. Heat Mass Transfer
75
,
425
432
(
2014
).
14.
J.
Chen
,
Z.
Han
,
L.
Wang
, and
C.
Wu
, “
Influence of arc interactions on heat and mass transfer during a two-arc hybrid welding
,”
Int. J. Heat Mass Transfer
148
,
119058
(
2020
).
15.
T.
Chen
,
Z.
Xiaoning
,
B.
Bai
,
Z.
Xu
,
C.
Wang
, and
W.
Xia
, “
Numerical study of DC argon arc with axial magnetic fields
,”
Plasma Chem. Plasma Process.
35
,
61
74
(
2015
).
16.
Y.
Li
,
L.
Wang
, and
C.
Wu
, “
A novel unified model of keyhole plasma arc welding
,”
Int. J. Heat Mass Transfer
133
,
885
894
(
2019
).
17.
X.-T.
Gao
and
B.
Tian
, “
Water-wave studies on a (2 + 1)-dimensional generalized variable-coefficient Boiti–Leon–Pempinelli system
,”
Appl. Math. Lett.
128
,
107858
(
2022
).
18.
X.-Y.
Gao
, “
Considering the wave processes in oceanography, acoustics and hydrodynamics by means of an extended coupled (2 + 1)-dimensional Burgers system
,”
Chin. J. Phys.
86
,
572
577
(
2023
).
19.
X.-Y.
Gao
, “
Letter to the Editor on the Korteweg-de Vries-type systems inspired by Results Phys. 51, 106624 (2023) and 50, 106566 (2023)
,”
Results Phys.
53
,
106932
(
2023
).
20.
X.-Y.
Gao
, “
Oceanic shallow-water investigations on a generalized Whitham–Broer–Kaup–Boussinesq–Kupershmidt system
,”
Phys. Fluids
35
,
127106
(
2023
).
21.
X.-Y.
Gao
, “
Two-layer-liquid and lattice considerations through a (3 + 1)-dimensional generalized Yu-Toda-Sasa-Fukuyama system
,”
Appl. Math. Lett.
152
,
109018
(
2024
).
22.
Y.
Shen
,
B.
Tian
,
T.-Y.
Zhou
, and
C.-D.
Cheng
, “
Multi-pole solitons in an inhomogeneous multi-component nonlinear optical medium
,”
Chaos, Solitons Fractals
171
,
113497
(
2023
).
23.
X.-H.
Wu
and
Y.-T.
Gao
, “
Generalized Darboux transformation and solitons for the Ablowitz–Ladik equation in an electrical lattice
,”
Appl. Math. Lett.
137
,
108476
(
2023
).
24.
T.-Y.
Zhou
,
B.
Tian
,
Y.
Shen
, and
X.-T.
Gao
, “
Auto-Bäcklund transformations and soliton solutions on the nonzero background for a (3 + 1)-dimensional Korteweg-de Vries-Calogero-Bogoyavlenskii-Schif equation in a fluid
,”
Nonlinear Dyn.
111
,
8647
8658
(
2023
).
25.
A.
Giridharan
and
G. L.
Samuel
, “
Modeling and analysis of crater formation during wire electrical discharge turning (WEDT) process
,”
Int. J. Adv. Manuf. Technol.
77
,
1229
1247
(
2014
).
26.
J.
Tao
,
J.
Ni
, and
A. J.
Shih
, “
Modeling of the anode crater formation in electrical discharge machining
,”
J. Manuf. Sci. Eng.
134
,
011002
(
2012
).
27.
S.
Li
,
Y.
Ci
,
D.
Zhang
,
C.
Zhang
, and
Y.
He
, “
Free arc liquid-phase dispersion method for the preparation of carbon nanotube dispersion
,”
Carbon Lett.
31
,
287
295
(
2020
).
28.
S.
Li
,
C.
Zhang
,
Y.
He
,
M.
Feng
,
C.
Ma
, and
Y.
Cui
, “
Multi-interpolation mixing effects under the action of micro-scale free arc
,”
J. Mater. Process. Technol.
271
,
645
650
(
2019
).
29.
S.
Li
,
Y.
He
,
C.
Jing
,
X.
Gong
,
L.
Cui
,
Z.
Cheng
,
C.
Zhang
, and
F.
Nan
, “
A novel preparation and formation mechanism of carbon nanotubes aerogel
,”
Carbon Lett.
28
,
16
23
(
2018
).
30.
D.
Zhang
,
Y.
Tang
,
C.
Zhang
,
Q.
Dong
,
W.
Song
, and
Y.
He
, “
One-step synthesis of SnO2/carbon nanotube nanonests composites by direct current arc-discharge plasma and its application in lithium-ion batteries
,”
Nanomaterials
11
,
3138
(
2021
).
31.
D.
Zhang
,
R.
Ding
,
Y.
Tang
, and
Y.
He
, “
PtRuFe/carbon nanotube composites as bifunctional catalysts for efficient methanol oxidation and oxygen reduction
,”
Langmuir
39
,
1640
1650
(
2023
).
32.
A.
Kojima
,
W.
Natsu
, and
M.
Kunieda
, “
Spectroscopic measurement of arc plasma diameter in EDM
,”
CIRP Ann.
57
,
203
207
(
2008
).
33.
Y.-J.
Kim
and
J.-C.
Lee
, “
Comparison of turbulence models for a free-burning high-intensity argon arc
,”
J. Korean Phys. Soc.
62
,
1252
1257
(
2013
).
34.
J.
Perambadur
,
A. Y.
Klimenko
,
V.
Rudolph
, and
P.
Shukla
, “
The investigation of arc fluctuations in thermal plasma torch using 3D modeling approach
,”
Int. J. Heat Mass Transfer
165
,
120666
(
2021
).
35.
G. V.
Naidis
, “
Simulation of convection-stabilized low-current glow and arc discharges in atmospheric-pressure air
,”
Plasma Sources Sci. Technol.
16
,
297
303
(
2007
).
36.
H.
Sadat
,
N.
Dubus
,
L.
Pinard
,
J. M.
Tatibouet
, and
J.
Barrault
, “
Conduction heat transfer in a cylindrical dielectric barrier discharge reactor
,”
Appl. Therm. Eng.
29
,
1259
1263
(
2009
).
37.
F.
Yang
,
K.
Liu
,
S.
Wang
,
B.
Gao
,
S.
Ai
,
X.
Zheng
,
Y.
Le
, and
I.
Uilah
, “
A thermal-stress field calculation method based on the equivalent heat source for the dielectric fitting under discharging
,”
Appl. Therm. Eng.
138
,
183
196
(
2018
).
38.
M.
Wu
,
F.
Yang
,
M.
Rong
,
Y.
Wu
,
Y.
Qi
,
Y.
Cui
,
Z.
Liu
, and
A.
Guo
, “
Numerical study of turbulence-influence mechanism on arc characteristics in an air direct current circuit breaker
,”
Phys. Plasmas
23
,
042306
(
2016
).
39.
F.
Karetta
and
M.
Lindmayer
, “
Simulation of the gasdynamic and electromagnetic processes in low voltage switching arcs
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part A
21
,
96
103
(
1998
).
40.
X.
Zhou
,
H.
Zhang
,
G.
Wang
, and
X.
Bai
, “
Three-dimensional numerical simulation of arc and metal transport in arc welding based additive manufacturing
,”
Int. J. Heat Mass Transfer
103
,
521
537
(
2016
).
41.
J. B.
Tong
,
X.
Lu
,
C. C.
Liu
,
Z. Q.
Pi
,
R. J.
Zhang
, and
X. H.
Qu
, “
Numerical simulation and prediction of radio frequency inductively coupled plasma spheroidization
,”
Appl. Therm. Eng.
100
,
1198
1206
(
2016
).
42.
W. E.
Ranz
and
W. R.
Marshall
, “
Evaporation from droplets
,”
Chem. Eng. Prog.
48
,
141
146
(
1952
).
43.
G.
Carollo
,
A.
Garbujo
,
Q.
Xin
,
J.
Fabro
,
P.
Cool
,
P.
Canu
, and
A.
Glisenti
, “
CuO/La0.5Sr0.5CoO3 nanocomposites in TWC
,”
Appl. Catal., B
255
,
117753
(
2019
).
44.
D.-E.
Ko
and
S.-H.
Shin
, “
Dynamic pressure distribution due to horizontal acceleration in spherical LNG tank with cylindrical central part
,”
IOP Conf. Ser.: Mater. Sci. Eng.
269
,
012082
(
2017
).
45.
C.
Zhang
,
L.
Bi
,
S.
Shi
,
H.
Wang
,
D.
Zhang
,
Y.
He
, and
W.
Li
, “
Two-steps method to prepare multilayer sandwich structure carbon fiber composite with thermal and electrical anisotropy and electromagnetic interference shielding
,”
Materials
16
,
680
(
2023
).
You do not currently have access to this content.