The measurement of nonlinear shear response of viscoelastic materials is often hindered by edge fracture instabilities. The phenomenon was first addressed theoretically by Tanner and Keentok and ever since has attracted the interest of experimentalists and theorists alike. Despite progress, accounting for or mitigating edge fracture remains a challenge, in particular when dealing with strongly viscoelastic materials such as entangled polymer melts. Here, we present and compare different experimental attempts to delay edge fracture in a cone-and-plate (CP) geometry, including the use of an immiscible fluid bath around the sample (that reduces the stress and interfacial gradients in comparison with the sample/air interface), a cone-partitioned plate (CPP) fixture, and an outer collar attached to the sample's edge (in a CP or CPP fixture). Focusing on the torque signal, we find that the combination of CPP and collar provides the best results. This may indeed help measuring highly elastic materials over an extended range of shear rates and, importantly, contribute to reliably measuring the normal stress coefficients in a cone-partitioned plate tool. It is, therefore, hoped that this simple idea will be further pursued in the direction of improving our current rheometric capabilities.

1.
R. I.
Tanner
,
Engineering Rheology
, 2nd ed. (
Oxford Engineering Science Series
,
New York
,
2000
).
2.
R. I.
Tanner
and
M.
Keentok
, “
Shear fracture in cone‐plate rheometry
,”
J. Rheol.
27
,
47
57
(
1983
).
3.
M.
Keentok
and
S.-C.
Xue
, “
Edge fracture in cone-plate and parallel plate flows
,”
Rheol. Acta
38
,
321
348
(
1999
).
4.
J.
Meissner
, “
Rheometry of polymer melts
,”
Annu. Rev. Fluid Mech.
17
,
45
64
(
1985
).
5.
E. J.
Hemingway
,
H.
Kusumaatmaja
, and
S. M.
Fielding
, “
Edge fracture in complex fluids
,”
Phys. Rev. Lett.
119
,
028006
(
2017
).
6.
E. J.
Hemingway
and
S. M.
Fielding
, “
Edge fracture instability in sheared complex fluids: Onset criterion and possible mitigation strategy
,”
J. Rheol.
63
,
735
750
(
2019
).
7.
S. T.
Chan
,
S.
Varchanis
,
S. J.
Haward
, and
A. Q.
Shen
, “
Perspective on edge fracture
,”
J. Rheol.
67
,
949
(
2023
).
8.
C.
Sui
and
G. B.
McKenna
, “
Instability of entangled polymers in cone and plate geometry
,”
Rheol. Acta
46
,
877
888
(
2007
).
9.
E.
Broyer
and
C. W.
Macosko
, “
Comparison of cone and plate, bicone and parallel plates geometries for melt rheological measurements
,”
SPE Tech. Pap.
21
,
343
345
(
1975
); presented at 33rd Annual SPE Technical Conference, Atlanta GA, 1975.
10.
R. L.
Crawley
and
W. W.
Graessley
, “
Geometry effects on stress transient data obtained by cone and plate flow
,”
Trans. Soc. Rheol.
21
,
19
49
(
1977
).
11.
J.
Meissner
,
R. W.
Garbella
, and
Hostettler
,
J.
, “
Measuring normal stress differences in polymer melt shear flow
,”
J. Rheol.
33
,
843
864
(
1989
).
12.
T.
Schweizer
, “
Measurement of the first and second normal stress differences in a polystyrene melt with a cone and partitioned plate tool
,”
Rheol. Acta
41
,
337
344
(
2002
).
13.
T.
Schweizer
,
J.
Hostettler
, and
F.
Mettler
, “
A shear rheometer for measuring shear stress and both normal stress differences in polymer melts simultaneously: The MTR 25
,”
Rheol. Acta
47
,
943
957
(
2008
).
14.
T.
Schweizer
and
W.
Schmidheiny
, “
A cone-partitioned plate rheometer cell with three partitions (CPP3) to determine shear stress and both normal stress differences for small quantities of polymeric fluids
,”
J. Rheol.
57
,
841
856
(
2013
).
15.
T.
Schweizer
, “
A quick guide to better viscosity measurements of highly viscous fluids
,”
Appl. Rheol.
14
,
197
201
(
2004
).
16.
F.
Snijkers
and
D.
Vlassopoulos
, “
Cone-partitioned-plate geometry for the ARES rheometer with temperature control
,”
J. Rheol.
55
,
1167
1186
(
2011
).
17.
Z. C.
Yan
,
S.
Costanzo
,
Y.
Jeong
,
T.
Chang
, and
D.
Vlassopoulos
, “
Linear and nonlinear shear rheology of a marginally entangled ring polymer
,”
Macromolecules
49
,
1444
1453
(
2016
).
18.
S.
Costanzo
,
Q.
Huang
,
G.
Ianniruberto
,
G.
Marrucci
,
O.
Hassager
, and
D.
Vlassopoulos
, “
Shear and extensional rheology of polystyrene melts and solutions with the same number of entanglements
,”
Macromolecules
49
,
3925
3935
(
2016
).
19.
S.
Costanzo
,
G.
Ianniruberto
,
G.
Marrucci
, and
D.
Vlassopoulos
, “
Measuring and assessing first and second normal stress differences of polymeric fluids with a modular cone-partitioned plate geometry
,”
Rheol. Acta
57
,
363
376
(
2018
).
20.
T.
Schweizer
and
M.
Stöckli
, “
Departure from linear velocity profile at the surface of polystyrene melts during shear in cone-plate geometry
,”
J. Rheol.
52
,
713
727
(
2008
).
21.
E. J.
Hemingway
and
S. M.
Fielding
, “
Interplay of edge fracture and shear banding in complex fluids: Onset criterion and possible mitigation strategy
,”
J. Rheol.
64
,
1147
1159
(
2020
).
22.
S.
Skorski
and
P. D.
Olmsted
, “
Loss of solutions in shear banding fluids driven by second normal stress differences
,”
J. Rheol.
55
,
1219
1246
(
2011
).
23.
D. C.
Venerus
, “
Free surface effects on normal stress measurements in cone and plate flow
,”
Appl. Rheol.
37
,
36494
(
2007
).
24.
M.
Alcoutlabi
,
S. G.
Baek
,
J. J.
Magda
,
X.
Shi
,
S. A.
Hutcheson
, and
G. B.
McKenna
, “
A comparison of three different methods for measuring both normal stress differences of viscoelastic liquids in torsional rheometers
,”
Rheol. Acta
48
,
191
200
(
2009
).
25.
C. S.
Lee
,
B. C.
Tripp
, and
J. J.
Magda
, “
Does N1 or N2 control the onset of edge fracture?
Rheola. Acta
31
,
306
308
(
1992
).
26.
S. T.
Chan
,
F. P. A.
van Berlo
,
H. A.
Faizi
,
A.
Matsumoto
,
S. J.
Haward
,
P. D.
Anderson
, and
A. Q.
Shen
, “
Torsional fracture of viscoelastic liquid bridges
,”
Proc. Natl. Acad. Sci.
118
,
e2104790118
(
2021
).
27.
S. T.
Chan
,
S.
Varchanis
,
S. J.
Haward
, and
A. Q.
Shen
, “
Torsional instability of constant viscosity elastic liquid bridges
,”
Soft Matter
18
,
1965
1977
(
2022
).
28.
Y. W.
Inn
,
K. F.
Wissbrun
, and
M. M.
Denn
, “
Effect of edge fracture on constant torque rheometry of entangled polymer solutions
,”
Macromolecules
38
,
9385
9388
(
2005
).
29.
S.
Ravindranath
and
S.-Q.
Wang
, “
Steady state measurements in stress plateau region of entangled polymer solutions: Controlled-rate and controlled-stress modes
,”
J. Rheol.
52
,
957
980
(
2008
).
30.
S.
Ravindranath
,
S.-Q.
Wang
,
M.
Olechnowicz
,
V. S.
Chavan
, and
R. P.
Quirk
, “
How polymeric solvents control shear inhomogeneity in large deformations of entangled polymer mixtures
,”
Rheol. Acta
50
,
97
105
(
2011
).
31.
Y.
Li
,
M.
Hu
,
G. B.
McKenna
,
C. J.
Dimitriou
,
G. H.
McKinley
,
R. M.
Mick
,
D. C.
Venerus
, and
L. A.
Archer
, “
Flow field visualization of entangled polybutadiene solutions under nonlinear viscoelastic flow conditions
,”
J. Rheol.
57
,
1411
1428
(
2013
).
32.
S. Q.
Wang
,
G. X.
Liu
,
S. W.
Cheng
,
P. E.
Boukany
,
Y. Y.
Wang
,
X.
Li
, and
S.
Ravindranath
, “
Letter to the Editor: Well entangled polymers do show shear strain localization at high enough Weissenberg numbers
,”
J. Rheol.
58
,
1059
1069
(
2014
).
33.
Y.
Li
,
M.
Hu
,
G. B.
McKenna
,
C. J.
Dimitriou
,
G. H.
McKinley
,
R. M.
Mick
,
D. C.
Venerus
, and
L. A.
Archer
, “
Response to: Sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers
,”
J. Rheol.
58
,
1071
1082
(
2013
).
34.
J. S.
Vrentas
,
D. C.
Venerus
, and
C. M.
Vrentas
, “
An exact analysis of reservoir effects for rotational rheometers
,”
Chem. Eng. Sci.
46
,
33
37
(
1991
).
35.
S. T.
Chan
,
S. J.
Haward
, and
A. Q.
Shen
, “
Prevention of edge fracture using a non-toxic liquid metal sealant
,”
Phys. Fluids
35
,
011704
(
2023
).
36.
N.
Grizzuti
,
P.
Moldenaers
,
M.
Mortier
, and
J.
Mewis
, “
On the time-dependency of the flow-induced dynamic moduli of a liquid crystalline hydroxypropylcellulose solution
,”
Rheol. Acta
32
,
218
226
(
1993
).
37.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
New York
,
2003
).
38.
E.
van Ruymbeke
and
D.
Vlassopoulos
, “
Macromolecular rheology
,” in
Macromolecular Engineering: From Precise Synthesis to Macroscopic Materials and Applications
, 2nd ed., edited by
K.
Matyjaszewski
,
Y.
Gnanou
,
N.
Hadjichristidis
, and
M.
Muthukumar
(
Wiley
,
New York
,
2022
).
39.
A. E.
Likhtman
and
T. C. B.
McLeish
, “
Quantitative theory for linear dynamics of linear entangled polymers
,”
Macromolecules
35
,
6332
6343
(
2002
).
40.
G.
Biresaw
,
C. J.
Carriere
, and
R. L.
Sammler
, “
Effect of temperature and molecular weight on the interfacial tension of PS/PDMS blends
,”
Rheol. Acta
42
,
142
147
(
2003
).
41.
D. J.
Henson
and
M. E.
Mackaya
, “
Effect of gap on the viscosity of monodisperse polystyrene melts: Slip effects
,”
J. Rheol.
39
,
359
373
(
1995
).
42.
E.
Chatzigiannakis
,
M.
Ebrahimi
, and
S. G.
Hatzikiriakos
, “
On the molecular weight dependence of slip velocity of polymer melts
,”
J. Rheol.
61
,
731
739
(
2017
).
43.
T.
Schweizer
and
A.
Bardow
, “
The role of instrument compliance in normal force measurements of polymer melts
,”
Rheol. Acta
45
,
393
402
(
2006
).
44.
E. V.
Menezes
and
W. W.
Graessley
, “
Nonlinear rheological behavior of polymer systems for several shear‐flow histories
,”
J. Polym. Sci. Part B
20
,
1817
1833
(
1982
).
45.
T.
Schweizer
, “
Comparing cone-partitioned plate and cone-standard plate shear rheometry of a polystyrene melt
,”
J. Rheol.
47
,
1071
1085
(
2003
).
46.
M.
Ebrahimi
,
V. K.
Konaganti
, and
S. G.
Hatzikiriakos
, “
Dynamic slip of polydisperse linear polymers using partitioned plate
,”
Phys. Fluids
30
,
030601
(
2018
).
47.
S. G.
Hatzikiriakos
, “
Wall slip of molten polymers
,”
Progr. Polym. Sci.
37
,
624
643
(
2012
).
48.
O.
Maklad
and
R.
Poole
, “
A review of the second normal-stress difference; its importance in various flows, measurement techniques, results for various complex fluids and theoretical predictions
,”
J. Non-Newtonian Fluid Mech.
292
,
104522
(
2021
).
You do not currently have access to this content.