The deicing process and its status characteristics of dual-side pulsed surface dielectric barrier discharge (SDBD) are studied via electro-optical diagnostics, thermal properties, and numerical simulation. Experimental results show that the dual-side pulsed SDBD can remove the glaze ice compared to the traditional pulsed SDBD under the applied pulse voltage of 8 kV and a pulse frequency of 1 kHz. The maximal temperature of dual-side pulsed SDBD reaches 39.5 °C under the discharge time of 800 s, while the maximal temperature of traditional pulsed SDBD is still below ice point about −7.8 °C. Surface temperatures of dual-side pulsed SDBD demonstrate that the SDBD with a gap of 1 mm possesses prospects in deicing. The maximal surface temperature reaches 37.1 °C under the pulse of 8 kV after the discharge time of 90 s. Focusing on the thermal effect, a two-dimensional plasma fluid model is implemented, and the results also indicate that the dual-side pulsed SDBD with a gap of 1 mm produces a highest heat density among the three different configurations. Comparing the spatial-temporal evolutions of plasma on both dielectric sides, primary positive streamer has a longer propagation length of 8.6 mm than the secondary negative streamer, the primary negative streamer, and the secondary positive streamer, which induces a long heat covered area. Four stages of deicing process are analyzed through a series of electrical parameters under different covered ice conditions.

1.
X.
Meng
,
H.
Hu
,
C.
Li
,
A. A.
Abbasi
,
J.
Cai
, and
H.
Hu
, “
Mechanism study of coupled aerodynamic and thermal effects using plasma actuation for anti-icing
,”
Phys. Fluids
31
(
3
),
037103
(
2019
).
2.
X.
Wang
,
J.
Kou
, and
W.
Zhang
, “
Unsteady aerodynamic prediction for iced airfoil based on multi-task learning
,”
Phys. Fluids
34
(
8
),
087117
(
2022
).
3.
A.
Sheidani
,
S.
Salavatidezfouli
,
G.
Stabile
,
M.
Barzegar Gerdroodbary
, and
G.
Rozza
, “
Assessment of icing effects on the wake shed behind a vertical axis wind turbine
,”
Phys. Fluids
35
,
095135
(
2023
).
4.
C.
Shinan
,
Q.
Haifeng
,
S.
He
, and
D.
Huanyu
, “
Numerical simulation of ice shedding motion characteristic on airfoil surface
,”
Phys. Fluids
35
,
045125
(
2023
).
5.
J.
Chen
,
P.
Yang
,
Y.
Zhang
, and
S.
Fu
, “
Aerodynamic prediction and roughness implementation toward ice accretion simulation
,”
Phys. Fluids
36
,
014107
(
2024
).
6.
Y.
Liu
,
C.
Kolbakir
,
A. Y.
Starikovskiy
,
R.
Miles
, and
H.
Hu
, “
An experimental study on the thermal characteristics of NS-DBD plasma actuation and application for aircraft icing mitigation
,”
Plasma Sources Sci. Technol.
28
(
1
),
014001
(
2019
).
7.
Y.
Wu
,
L.
Dong
,
X.
Shu
,
Y.
Yang
,
P.
Feng
, and
Q.
Ran
, “
Recent advancements in photothermal anti-icing/deicing materials
,”
Chem. Eng. J.
469
,
143924
(
2023
).
8.
K.
Golovin
,
S. P. R.
Kobaku
,
D. H.
Lee
,
E. T.
DiLoreto
,
J. M.
Mabry
, and
A.
Tuteja
, “
Designing durable icephobic surfaces
,”
Sci. Adv.
2
(
3
),
e1501496
(
2016
).
9.
S. K.
Thomas
,
R. P.
Cassoni
, and
C. D.
MacArthur
, “
Aircraft anti-icing and de-icing techniques and modeling
,”
J. Aircr.
33
(
5
),
841
(
1996
).
10.
S.
Nijdam
,
J.
Teunissen
, and
U.
Ebert
, “
The physics of streamer discharge phenomena
,”
Plasma Sources Sci. Technol.
29
(
10
),
103001
(
2020
).
11.
X.-F.
Zhou
,
H.-F.
Xiang
,
M.-H.
Yang
,
W.-Q.
Geng
, and
K.
Liu
, “
Temporal evolution characteristics of the excited species in a pulsed needle-water discharge: Effect of voltage and frequency
,”
J. Phys. D: Appl. Phys.
56
(
45
),
455202
(
2023
).
12.
N.
Jiang
,
X.
Kong
,
X.
Lu
,
B.
Peng
,
Z.
Liu
,
J.
Li
,
K.
Shang
,
N.
Lu
, and
Y.
Wu
, “
Promoting streamer propagation, active species generation and trichloroethylene degradation using a three-electrode nanosecond pulsed sliding DBD nanosecond plasma
,”
J. Cleaner Prod.
332
,
129998
(
2022
).
13.
J.
Chen
,
H.
Zong
,
H.
Song
,
Y.
Wu
,
H.
Liang
, and
Z.
Su
, “
Closed-loop plasma flow control of a turbulent cylinder wake flow using machine learning at Reynolds number of 28 000
,”
Phys. Fluids
36
,
015123
(
2024
).
14.
A.
Starikovskiy
and
N.
Aleksandrov
, “
Plasma-assisted ignition and combustion
,”
Prog. Energy Combust. Sci.
39
(
1
),
61
110
(
2013
).
15.
K. H. R.
Rouwenhorst
,
F.
Jardali
,
A.
Bogaerts
, and
L.
Lefferts
, “
From the Birkeland–Eyde process towards energy-efficient plasma-based NOX synthesis: A techno-economic analysis
,”
Energy Environ. Sci.
14
(
5
),
2520
2534
(
2021
).
16.
Z.
Wang
,
L.
Liu
,
D.
Liu
,
M.
Zhu
,
J.
Chen
,
J.
Zhang
,
F.
Zhang
,
J.
Jiang
,
L.
Guo
,
X.
Wang
, and
M.
Rong
, “
Combination of NOx mode and O3 mode air discharges for water activation to produce a potent disinfectant
,”
Plasma Sources Sci. Technol.
31
(
5
),
05LT01
(
2022
).
17.
X.
Deng
and
Z.
Hou
, “
Thermal characteristic and spatial morphology between electrode and phase changing ice during de-icing process of dielectric barrier discharge and critical behavior of the surface charge density
,”
Int. J. Heat Mass Transfer
190
,
122556
(
2022
).
18.
L.
Xie
,
H.
Liang
,
H.
Zong
,
X.
Liu
, and
Y.
Li
, “
Multipurpose distributed dielectric-barrier-discharge plasma actuation: Icing sensing, anti-icing, and flow control in one
,”
Phys. Fluids
34
(
7
),
071701
(
2022
).
19.
Z.
Chen
,
C. C.
Wong
, and
C.-Y.
Wen
, “
Thermal effects on the performance of a nanosecond dielectric barrier discharge plasma actuator at low air pressure
,”
Phys. Fluids
35
,
017110
(
2023
).
20.
W.
Hui
,
H.
Zhang
,
J.
Wang
,
X.
Meng
, and
H.
Li
, “
Heat transfer characteristics of plasma actuation in different boundary-layer flows
,”
Phys. Fluids
34
,
034110
(
2022
).
21.
B.
Peng
,
J.
He
,
Z.
Liu
,
X.
Yao
,
N.
Jiang
,
K.
Shang
,
N.
Lu
,
J.
Li
, and
Y.
Wu
, “
Ice-breaking by three-electrode pulsed surface dielectric barrier discharge: Breakdown mode transition
,”
J. Phys. D: Appl. Phys.
52
(
50
),
50LT01
(
2019
).
22.
S.
Yang
,
X.
Yi
,
Q.
Guo
,
C.
Xiao
,
Z.
Luo
, and
Y.
Zhou
, “
Novel hybrid ice protection system combining thermoelectric system and synthetic jet actuator
,”
AIAA J.
59
(
4
),
1496
1500
(
2020
).
23.
B.
Peng
,
N.
Jiang
,
K.
Shang
,
N.
Lu
,
J.
Li
, and
Y.
Wu
, “
Characteristics of three-electrode pulsed surface dielectric barrier discharge: Streamer-to-spark transition and hydrodynamic expansion
,”
J. Phys. D: Appl. Phys.
55
(
26
),
265202
(
2022
).
24.
X.
Meng
,
J.
Cai
,
Y.
Tian
,
X.
Han
, and
D.
Zhang
, “
Experimental study of anti-icing and deicing on a cylinder by DBD plasma actuation
,” AIAA Paper No. 2016-4019,
2016
.
25.
Y.
Liu
,
C.
Kolbakir
,
H.
Hu
, and
H.
Hu
, “
A comparison study on the thermal effects in DBD plasma actuation and electrical heating for aircraft icing mitigation
,”
Int. J. Heat Mass Transfer
124
,
319
330
(
2018
).
26.
Y.
Liu
,
C.
Kolbakir
,
H.
Hu
,
X.
Meng
, and
H.
Hu
, “
An experimental study on the thermal effects of duty-cycled plasma actuation pertinent to aircraft icing mitigation
,”
Int. J. Heat Mass Transfer
136
,
864
876
(
2019
).
27.
C.
Kolbakir
,
Y.
Liu
,
H.
Hu
,
A.
Starikovskiy
, and
R. B.
Miles
, “
An experimental investigation on the thermal effects of NS-DBD and AC-DBD plasma actuators for aircraft icing mitigation
,” AIAA Paper No. 2018-0164,
2018
.
28.
B.
Wei
,
Y.
Wu
,
H.
Liang
,
Y.
Zhu
,
J.
Chen
,
G.
Zhao
,
H.
Song
,
M.
Jia
, and
H.
Xu
, “
SDBD based plasma anti-icing: A stream-wise plasma heat knife configuration and criteria energy analysis
,”
Int. J. Heat Mass Transfer
138
,
163
172
(
2019
).
29.
X.
Zheng
,
H.
Song
,
D.
Bian
,
H.
Liang
,
H.
Zong
,
Z.
Huang
,
Y.
Wang
, and
W.
Xu
, “
A hybrid plasma de-icing actuator by using SiC hydrophobic coating-based quartz glass as barrier dielectric
,”
J. Phys. D: Appl. Phys.
54
,
375202
(
2021
).
30.
M.
Lindner
,
A. V.
Pipa
,
N.
Karpen
,
R.
Hink
,
D.
Berndt
,
R.
Foest
,
E.
Bonaccurso
,
R.
Weichwald
,
A.
Friedberger
,
R.
Caspari
,
R.
Brandenburg
, and
R.
Schreiner
, “
Icing mitigation by MEMS-fabricated surface dielectric barrier discharge
,”
Appl. Sci.
11
,
11106
(
2021
).
31.
Y.
Zhong
,
Z.
Jin
,
M.
Chen
, and
Z.
Yang
, “
An experimental investigation of the thermal effects in AC-DBD plasma actuator on the melting process of an ice bead
,”
Exp. Therm. Fluid Sci.
147
,
110950
(
2023
).
32.
B.
Wei
,
Y.
Wu
,
H.
Liang
,
J.
Chen
,
G.
Zhao
,
M.
Tian
, and
H.
Xu
, “
Performance and mechanism analysis of nanosecond pulsed surface dielectric barrier discharge based plasma deicer
,”
Phys. Fluids
31
,
091701
(
2019
).
33.
Y.
Zhu
,
Y.
Wu
,
B.
Wei
,
H.
Xu
,
H.
Liang
,
M.
Jia
,
H.
Song
, and
Y.
Li
, “
Nanosecond-pulsed dielectric barrier discharge-based plasma-assisted anti-icing: Modeling and mechanism analysis
,”
J. Phys. D: Appl. Phys.
53
,
145205
(
2020
).
34.
S.
Ihara
and
C.
Yamabe
, “
Breaking of ice using pulsed power
,”
Jpn. J. Appl. Phys., Part 1
43
(
8A
),
5528
5532
(
2004
).
35.
T.
Gao
,
Z.
Luo
,
Y.
Zhou
,
Z.
Liu
,
W.
Peng
,
P.
Cheng
, and
X.
Deng
, “
Novel deicing method based on plasma synthetic jet actuator
,”
AIAA J.
58
(
9
),
4181
4188
(
2020
).
36.
T.
Gao
,
Z.
Luo
,
Y.
Zhou
,
S.
Yang
,
W.
Peng
,
X.
Deng
, and
P.
Cheng
, “
Experimental investigation on ice-breaking performance of a novel plasma striker
,”
Chin. J. Aeronaut.
35
(
1
),
307
317
(
2022
).
37.
Y.
Han
,
J.
Palacios
, and
S.
Schmitz
, “
Scaled ice accretion experiments on a rotating wind turbine blade
,”
J. Wind Eng. Ind. Aerodyn.
109
,
55
67
(
2012
).
38.
N.
Sakakibara
and
K.
Terashima
, “
Generation of H2O-ice dielectric barrier discharge for the development of novel cryogenic reaction fields
,”
J. Phys. D: Appl. Phys.
50
(
22
),
22LT01
(
2017
).
39.
J.
Kruszelnicki
,
R.
Ma
, and
M. J.
Kushner
, “
Propagation of atmospheric pressure plasmas through interconnected pores in dielectric materials
,”
J. Appl. Phys.
129
(
14
),
143302
(
2021
).
40.
C.
Li
,
J.
Teunissen
,
M.
Nool
,
W.
Hundsdorfer
, and
U.
Ebert
, “
A comparison of 3D particle, fluid and hybrid simulations for negative streamers
,”
Plasma Sources Sci. Technol.
21
(
5
),
055019
(
2012
).
41.
W.
Ning
,
J.
Lai
,
J.
Kruszelnicki
,
J. E.
Foster
,
D.
Dai
, and
M. J.
Kushner
, “
Propagation of positive discharges in an air bubble having an embedded water droplet
,”
Plasma Sources Sci. Technol.
30
(
1
),
015005
(
2021
).
42.
A.
Komuro
,
T.
Ryu
,
A.
Yoshino
,
T.
Namihira
,
D.
Wang
, and
R.
Ono
, “
Streamer propagation in atmospheric-pressure air: Effect of the pulse voltage rise rate from 0.1 to 100 kV/ns and streamer inception voltage
,”
J. Phys. D: Appl. Phys.
54
,
364004
(
2021
).
43.
W.
Wang
,
H.-H.
Kim
,
K.
Van Laer
, and
A.
Bogaerts
, “
Streamer propagation in a packed bed plasma reactor for plasma catalysis applications
,”
Chem. Eng. J.
334
,
2467
2479
(
2018
).
44.
V. R.
Soloviev
,
E. M.
Anokhin
, and
N. L.
Aleksandrov
, “
Spatial distribution of radiation emitted by pulsed surface dielectric barrier discharge in air
,”
Plasma Sources Sci. Technol.
29
(
3
),
035006
(
2020
).
45.
Y.
Zhu
,
X.
Chen
,
Y.
Wu
, and
S.
Starikovskaia
,
PASSKEy code [software]
(
Science and Technology of Plasma Dynamics Laboratory, China and Laboratoire de Physique des Plasmas
,
2021
), see http://www.plasma-tech.net/parser/passkey/.
46.
Y.
Zhu
,
X.
Chen
,
Y.
Wu
,
J.
Hao
,
X.
Ma
,
P.
Lu
, and
P.
Tardiveau
, “
Simulation of ionization-wave discharges: A direct comparison between the fluid model and E-FISH measurements
,”
Plasma Sources Sci. Technol.
30
(
7
),
075025
(
2021
).
47.
X.
Chen
,
Y.
Zhu
,
Y.
Wu
,
J.
Hao
,
X.
Ma
, and
P.
Lu
, “
Numerical investigations of nanosecond surface streamers at elevated pressure
,”
Plasma Sources Sci. Technol.
30
,
075008
(
2021
).
48.
A.
Bourdon
,
V. P.
Pasko
,
N. Y.
Liu
,
S.
Célestin
,
P.
Ségur
, and
E.
Marode
, “
Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations
,”
Plasma Sources Sci. Technol.
16
(
3
),
656
678
(
2007
).
49.
A. V.
Phelps
and
L. C.
Pitchford
, “
Anisotropic scattering of electrons by N2 and its effect on electron transport
,”
Phys. Rev. A
31
(
5
),
2932
2949
(
1985
).
50.
S. A.
Lawton
and
A. V.
Phelps
, “
Excitation of the b1Σ+ g state of O2 by low energy electrons
,”
J. Chem. Phys.
69
(
3
),
1055
1068
(
1978
).
51.
N.
Popov
, “
Fast gas heating in a nitrogen–oxygen discharge plasma: I. Kinetic mechanism
,”
J. Phys. D: Appl. Phys.
44
(
28
),
285201
(
2011
).
52.
I.
Kossyi
,
A. Y.
Kostinsky
,
A.
Matveyev
, and
V.
Silakov
, “
Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures
,”
Plasma Sources Sci. Technol.
1
(
3
),
207
220
(
1992
).
53.
S.
Pancheshnyi
,
M.
Nudnova
, and
A.
Starikovskii
, “
Development of a cathode-directed streamer discharge in air at different pressures: Experiment and comparison with direct numerical simulation
,”
Phys. Rev. E
71
(
1
),
016407
(
2005
).
54.
J.
Poggie
,
I.
Adamovich
,
N.
Bisek
, and
M.
Nishihara
, “
Numerical simulation of nanosecond-pulse electrical discharges
,”
Plasma Sources Sci. Technol.
22
(
1
),
015001
(
2012
).
55.
G.
Hagelaar
and
L.
Pitchford
, “
Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models
,”
Plasma Sources Sci. Technol.
14
(
4
),
722
733
(
2005
).
56.
B.
Huang
,
C.
Zhang
,
W.
Zhu
,
X.
Lu
, and
T.
Shao
, “
Ionization waves in nanosecond pulsed atmospheric pressure plasma jets in argon
,”
High Voltage
6
(
4
),
665
673
(
2021
).
57.
S. B.
Leonov
,
I. V.
Adamovich
, and
V. R.
Soloviev
, “
Dynamics of near-surface electric discharges and mechanisms of their interaction with the airflow
,”
Plasma Sources Sci. Technol.
25
(
6
),
063001
(
2016
).
58.
R.
Tirumala
,
N.
Benard
,
E.
Moreau
,
M.
Fenot
,
G.
Lalizel
, and
E.
Dorignac
, “
Temperature characterization of dielectric barrier discharge actuators: Influence of electrical and geometric parameters
,”
J. Phys. D: Appl. Phys.
47
(
25
),
255203
(
2014
).
59.
Y.
Jiang
,
B.
Peng
,
Z.
Liu
,
N.
Jiang
,
N.
Lu
,
K.
Shang
, and
J.
Li
, “
Characteristic studies on positive and negative streamers of double-sided pulsed surface dielectric barrier discharge
,”
Plasma Sci. Technol.
24
,
044005
(
2022
).
60.
V. R.
Soloviev
,
V. M.
Krivtsov
,
S. A.
Shcherbanev
, and
S. M.
Starikovskaia
, “
Evolution of nanosecond surface dielectric barrier discharge for negative polarity of a voltage pulse
,”
Plasma Sources Sci. Technol.
26
,
014001
(
2016
).
61.
M.
Abdollahzadeh
,
F.
Rodrigues
, and
J. C.
Pascoa
, “
Simultaneous ice detection and removal based on dielectric barrier discharge actuators
,”
Sens. Actuators, A
315
,
112361
(
2020
).
62.
K.
Watanabe
and
T.
Wake
, “
Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR
,”
Cold Reg. Sci. Technol.
59
,
34
41
(
2009
).
63.
M. A.
Hilhorst
,
C.
Dirksen
,
F. W. H.
Kampers
, and
R. A.
Feddes
, “
Dielectric relaxation of bound water versus soil matric pressure
,”
Soil Sci. Soc. Am. J.
65
,
311
314
(
2001
).
64.
G. C.
Topp
,
S.
Zegelin
, and
I.
White
, “
Impacts of the real and imaginary components of relative permittivity on time domain reflectometry measurements in soils
,”
Soil Sci. Soc. Am. J.
64
,
1244
1252
(
2000
).
65.
D. A.
Robinson
,
C. M. K.
Gardner
, and
J. D.
Cooper
, “
Measurement of relative permittivity in sandy soils using TDR, capacitance and theta probes: Comparison, including the effects of bulk soil electrical conductivity
,”
J. Hydrol.
223
,
198
211
(
1999
).
66.
M.
Abdollahzadeh
,
F.
Rodrigues
,
J.
Nunes-Pereira
,
J. C.
Pascoa
, and
L.
Pires
, “
Parametric optimization of surface dielectric barrier discharge actuators for ice sensing application
,”
Sens. Actuators, A
335
,
113391
(
2022
).
You do not currently have access to this content.