Fused filament fabrication technique is the most popular additive manufacturing that has received extensive attention, revolutionizing industrial production processes. In addition to the standard thermoplastic polymers, much emphasis is placed on developing electrically conductive functional filaments being the most interesting. While there are conductive filaments that are commercially available, the market lacks a wide range of flexible options. Hence, this paper presents innovative filaments based on the combination of thermoplastic hot melt copolyester adhesive (HMA) with multi-walled carbon nanotubes (MWCNT). The incorporation of carbon nanotubes into the HMA was carried out through a two-step process. First, a masterbatch of 10 wt. % MWCNT was diluted with pure polymer using a half-industrial twin-screw extruder to obtain concentrations in the range of 1–9 wt. %. Consequently, the nanocomposite pellets were extruded again into the form of filaments. The rheological analysis demonstrates that adding MWCNT to the HMA increases both the viscous and elastic behavior of the composites. The homogenously dispersed nanotubes in the polymer matrix led to electrical conductivity of 1.39 S/m for the filaments containing 10 wt. % MWCNT. They are also characterized by the stiffness and tensile strength of about 300 and 13 MPa, respectively. With high thermal stability up to 360 °C, low porosity, and high flexibility, the developed filaments are suitable for 3D printing. The printability of all filaments was confirmed, exhibiting lack of breakage during printing and visibly better quality of the parts with the higher nanotube content.

1.
L.
Tan
,
W.
Zhu
, and
K.
Zhou
, “
Recent progress on polymer materials for additive manufacturing
,”
Adv. Funct. Mater.
30
,
2003062
(
2020
).
2.
M.
Harris
,
J.
Potgieter
,
R.
Archer
, and
K. M.
Arif
, “
Effect of material and process specific factors on the strength of printed parts in fused filament fabrication: A review of recent developments
,”
Materials
12
(
10
),
1664
(
2019
).
3.
P.
Penumakala
,
J.
Santo
, and
A.
Thomas
, “
A critical review on the fused deposition modeling of thermoplastic polymer composites
,”
Composites, Part B
201
,
108336
(
2020
).
4.
S.
Wickramasinghe
,
T.
Do
, and
P.
Tran
, “
FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments
,”
Polymers
12
,
1529
(
2020
).
5.
F.
Badrul
,
K. A. A.
Halim
,
M. A. A. M.
Salleh
,
M. F.
Omar
,
A. F.
Osman
, and
M. S.
Zakaria
, “
Current advancement in electrically conductive polymer composites for electronic interconnect applications: A short review
,”
IOP Conf. Ser: Mater. Sci. Eng.
701
(
61
),
012039
(
2019
).
6.
Y.
Huang
,
S.
Kormakov
,
X.
He
,
X.
Gao
,
X.
Zheng
,
Y.
Liu
,
J.
Sun
, and
D.
Wu
, “
Conductive polymer composites from renewable resources: An overview of preparation, properties, and applications
,”
Polymers
11
,
187
(
2019
).
7.
R.
Yadav
,
M.
Tirumali
,
X.
Wang
,
M.
Naebe
, and
B.
Kandasubramanian
, “
Polymer composite for antistatic application in aerospace
,”
Defence Technol.
16
(
1
),
107
118
(
2020
).
8.
B.
Alemour
,
O.
Badran
, and
M.
Hassan
, “
A review of using conductive composite materials in solving lightning strike and ice accumulation problems in aviation
,”
J. Aerosp. Technol. Manage.
11
,
10
(
2019
).
9.
L.
Wang
,
H.
Wang
,
Q.
Wan
, and
J.
Gao
, “
Recent development of conductive polymer composite-based strain sensors
,”
J. Polym. Sci.
61
(
24
),
3167
3185
(
2023
).
10.
Z.
Aloqalaa
, “
Electrically conductive fused deposition modeling filaments: Current status and medical applications
,”
Crystals
12
(
8
),
1055
(
2022
).
11.
S.
Sharma
,
P.
Sudhakara
,
A. A. B.
Omran
,
J.
Singh
, and
R. A.
Ilyas
, “
Recent trends and developments in conducting polymer nanocomposites for multifunctional applications
,”
Polymers
13
(
17
),
2898
(
2021
).
12.
M. H.
Al-Saleh
, “
Synergistic effect of CNT/CB hybrid mixture on the electrical properties of conductive composites
,”
Mater. Res. Express
6
(
6
),
065011
(
2019
).
13.
R.
Paz Hernández
,
R.
Moriche
,
M.
Monzon
, and
J.
García Montagut
, “
Influence of manufacturing parameters and post processing on the electrical conductivity of extrusion-based 3D printed nanocomposite parts
,”
Polymers
12
,
733
(
2020
).
14.
C.
Vu
,
T.
Nguyen
,
S.
Kim
, and
J.
Kim
, “
Effects of 3D printing-line directions for stretchable sensor performances
,”
Materials
14
,
1791
(
2021
).
15.
A.
Georgopoulou
,
T.
Sebastian
, and
F.
Clemens
, “
Thermoplastic elastomer composite filaments for strain sensing applications extruded with an FDM 3D printer
,”
Flexible Printed Electron.
5
,
035002
(
2020
).
16.
B.
Podsiadly
,
P.
Matuszewski
,
A.
Skalski
, and
M.
Słoma
, “
Carbon nanotube-based composite filaments for 3D printing of structural and conductive elements
,”
Appl. Sci.
11
,
1272
(
2021
).
17.
S.
Kwok
,
K.
Goh
,
Z.
Tan
,
S.
Tan
,
W.
Tjiu
,
J.
Soh
,
Z.
Ng
,
Y.
Chan
,
H.
Hui
, and
K. E.
Goh
, “
Electrically conductive filament for 3D-printed circuits and sensors
,”
Appl. Mater. Today
9
,
167
175
(
2017
).
18.
V. B.
Mohan
,
B.
Krebs
, and
D.
Bhattacharyya
, “
Development of novel highly conductive 3D printable hybrid polymer-graphene composites
,”
Mater. Today
17
,
554
(
2018
).
19.
C.
Sweeney
,
B.
Lackey
,
M.
Pospisil
,
T.
Achee
,
V.
Hicks
,
A.
Moran
,
B.
Teipel
,
M.
Saed
, and
M.
Green
, “
Welding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating
,”
Sci. Adv.
3
,
e1700262
(
2017
).
20.
K.
Gnanasekaran
,
T.
Heijmans
,
S.
Bennekom
,
H.
Woldhuis
,
S.
Wijnia
,
G.
With
, and
H.
Friedrich
, “
3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling
,”
Appl. Mater. Today
9
,
21
28
(
2017
).
21.
J.
Christ
,
N.
Aliheidari
,
A.
Ameli
, and
P.
Pötschke
, “
3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites
,”
Mater. Des.
131
,
394
(
2017
).
22.
N.
Kim
, “
3D-printed conductive carbon-infused thermoplastic polyurethane
,”
Polymers
12
,
1224
(
2020
).
23.
A.
Santamaria
,
M. E.
Muñoz
,
M.
Fernández
, and
M.
Landa
, “
Electrically conductive adhesives with a focus on adhesives that contain carbon nanotubes
,”
J. Appl. Polym. Sci.
129
(
4
),
1643
1652
(
2013
).
24.
Y.
Li
,
D.
Lu
, and
C. P.
Wong
,
Electrical Conductive Adhesives with Nanotechnologies
(
Springer Science & Business Media
,
2009
).
25.
C. W.
Paul
, “
Hot-melt adhesives
,”
MRS Bull.
28
(
6
),
440
444
(
2003
).
26.
W.
Li
,
L.
Bouzidi
, and
S. S.
Narine
, “
Current research and development status and prospect of hot-melt adhesives: A review
,”
Ind. Eng. Chem. Res.
47
(
20
),
7524
7532
(
2008
).
27.
P.
Latko-Durałek
,
M.
Misiak
, and
A.
Boczkowska
, “
Electrically conductive adhesive based on thermoplastic hot melt copolyamide and multi-walled carbon nanotubes
,”
Polymers
14
,
4371
(
2022
).
28.
X.-L.
Xie
,
Y.-W.
Mai
, and
X.-P.
Zhou
, “
Dispersion and alignment of carbon nanotubes in polymer matrix: A review
,”
Mater. Sci. Eng., R
49
,
89
112
(
2005
).
29.
M.
Landa
,
J.
Canales
,
M.
Fernandez
,
M.
Muñoz
, and
A.
Santamaría
, “
Effect of MWCNTs and graphene on the crystallization of polyurethane based nanocomposites, analyzed via calorimetry, rheology and AFM microscopy
,”
Polym. Testing
35
,
101
(
2014
).
30.
C.
Kingston
,
R.
Zepp
,
A.
Andrady
,
D.
Boverhof
,
R.
Fehir
,
D.
Hawkins
,
J.
Roberts
,
P.
Sayre
,
B.
Shelton
,
Y.
Sultan
,
V.
Vejins
, and
W.
Wohlleben
, “
Release characteristics of selected carbon nanotube polymer composites
,”
Carbon
68
,
33
57
(
2014
).
31.
K.
Dydek
,
P.
Latko-Durałek
,
A.
Sulowska
,
M.
Kubiś
,
S.
Demski
,
P.
Kozera
,
B.
Sztorch
, and
A.
Boczkowska
, “
Effect of processing temperature and the content of carbon nanotubes on the properties of nanocomposites based on polyphenylene sulfide
,”
Polymers
13
,
3816
(
2021
).
32.
M. R.
Nobile
, in
Polymer–Carbon Nanotube Composites
, edited by
T.
McNally
and
P.
Pötschke
(
Woodhead Publishing
,
2011
), pp.
428
481
.
33.
R. M.
Novais
,
F.
Simon
,
M. C.
Paiva
, and
J. A.
Covas
, “
The influence of carbon nanotube functionalization route on the efficiency of dispersion in polypropylene by twin-screw extrusion
,”
Composites, Part A
43
(
12
),
2189
2198
(
2012
).
34.
A.
Oseli
,
A.
Vesel
,
E.
Žagar
, and
L. S.
Perše
, “
Mechanisms of single-walled carbon nanotube network formation and its configuration in polymer-based nanocomposites
,”
Macromolecules
54
(
7
),
3334
3346
(
2021
).
35.
Y.
Zhang
,
H.
Niu
,
W.
Liyun
,
N.
Wang
,
T.
Xu
,
Z.
Zhou
,
Y.
Xie
,
H.
Wang
,
Q.
He
,
K.
Zhang
, and
Y.
Yao
, “
Fabrication of thermally conductive polymer composites based on hexagonal boron nitride: recent progresses and prospects
,”
Nano Express
2
,
042002
(
2021
).
36.
A.
Du Plessis
,
S.
Roux
, and
F.
Steyn
, “
Quality investigation of 3D printer filament using laboratory x-ray tomography
,”
3D Print. Addit. Manuf.
3
,
262
(
2016
).
37.
L.
Bokobza
,
B.
Bresson
,
G.
Garnaud
, and
J.
Zhang
, “
Mechanical and AFM investigations of elastomers filled with multiwall carbon nanotubes
,”
Compos. Interfaces
19
,
285
(
2012
).
38.
N.
George
,
J. C.
C.s
,
A.
Mathiazhagan
, and
R.
Joseph
, “
High performance natural rubber composites with conductive segregated network of multiwalled carbon nanotubes
,”
Compos. Sci. Technol.
116
,
33
40
(
2015
).
39.
L.
Pan
,
Q.
Lv
, and
N.
Xu
, “
Properties and mechanism of antistatic biodegradable polylactic acid/multi-walled carbon nanotube composites
,”
J. Eng. Fibers Fabr.
15
,
155892502096881
(
2020
).
40.
S.
Kumar
,
M. R.
Ramesh
,
M.
Doddamani
,
S. M.
Rangappa
, and
S.
Siengchin
, “
Mechanical characterization of 3D printed MWCNTs/HDPE nanocomposites
,”
Polym. Test.
114
,
107703
(
2022
).
41.
F.
Wehnert
,
P.
Pötschke
, and
I.
Jansen
, “
Hotmelts with improved properties by integration of carbon nanotubes
,”
Int. J. Adhes. Adhes.
62
,
63
68
(
2015
).
42.
J.
Oh
,
K.
Ahn
, and
J.
Hong
, “
Dispersion of entangled carbon nanotube by melt extrusion
,”
Korea Australia Rheol. J.
22
,
89
94
(
2010
).
43.
S.
Lage-Rivera
,
A.
Ares-Pernas
,
J. C.
Becerra Permuy
,
A.
Gosset
, and
M.-J.
Abad
, “
Enhancement of 3D printability by FDM and electrical conductivity of PLA/MWCNT filaments using lignin as bio-dispersant
,”
Polymers
15
(
4
),
999
(
2023
).
44.
Y.
Lin
,
M.
Gigliotti
,
M. C.
Lafarie-Frenot
,
J.
Bai
,
D.
Marchand
, and
D.
Mellier
, “
Experimental study to assess the effect of carbon nanotube addition on the through-thickness electrical conductivity of CFRP laminates for aircraft applications
,”
Composites, Part B
76
,
31
37
(
2015
).
You do not currently have access to this content.