Sulfolane is a groundwater pollutant. While sulfolane is miscible in pure water, its miscibility in the presence of ions has not been widely investigated. This aspect is relevant to predict sulfolane migration in groundwater. Na2SO4 separates sulfolane from water, yielding bulk separation, emulsions seen by optical microscopy or molecular sulfolane clusters. We study these clusters with fluorescence spectroscopy, small-angle x ray (SAXS) and neutron (SANS) scattering, and x-ray absorption fine structure (XAFS). Fluorescence spectroscopy reveals non-monotonic changes in the local viscosity of the water phase with 10% sulfolane and 0.25-1M Na2SO4, likely resulting from the interplay between sulfolane clustering and enhanced interactions between water molecules. NaCl affects the micro-viscosity of water similarly to Na2SO4, but at higher concentrations. At low sulfolane percentages, Cl decreases the activity coefficients of water and sulfolane, suggesting stronger sulfolane–sulfolane and water–water interactions. SAXS confirms that Na2SO4 induces sulfolane clustering. SAXS data modeled with a power law and a Gaussian reveal a correlation length ξ = 16.3 Å, which we view as the radius of a sulfolane cluster surrounded by water and Na+ ions. SANS also shows that 2 mol. % of sulfate and chloride salts induce sulfolane clustering, with sulfates having a more marked effect. Furthermore, XAFS reveals that sulfates affect sulfolane sorption onto Si3N4 surfaces. Without Na2SO4, sulfolane directly sorbs onto Si3N4 surfaces. Conversely, with Na2SO4, water is directly sorbed onto Si3N4, likely because it surrounds sulfolane clusters. Also, hydrated Na+ ions are in Si3N4 surface proximity.

1.
T. G.
Nguyen
and
N. T. H.
Huynh
, “
Characterization of groundwater quality and human health risk assessment
,”
Civ. Eng. J.
9
,
618
(
2023
).
2.
A.
Telepanich
,
T.
Marshall
,
S.
Gregori
,
A. G.
Marangoni
, and
E.
Pensini
, “
Graphene-Alginate fluids as unconventional electrodes for the electrokinetic remediation of Cr(VI)
,”
Water, Air, Soil Pollut.
232
,
334
(
2021
).
3.
L.
Earnden
,
A. G.
Marangoni
,
T.
Laredo
,
J.
Stobbs
,
T.
Marshall
, and
E.
Pensini
, “
Decontamination of water co-polluted by copper, toluene and tetrahydrofuran using lauric acid
,”
Sci. Rep.
12
,
15832
(
2022
).
4.
T.
Marshall
,
L.
Earnden
,
A. G.
Marangoni
,
T.
Laredo
, and
E.
Pensini
, “
Cubic mesophases of self-assembled amphiphiles separate miscible solvents
,”
Colloids Surf. A
650
,
129548
(
2022
).
5.
M.
Dinh
,
S. G.
Hakimabadi
, and
A. L. T.
Pham
, “
Treatment of sulfolane in groundwater: A critical review
,”
J. Environ. Manage.
263
,
110385
(
2020
).
6.
M.
Izadifard
,
G.
Achari
, and
C. H.
Langford
, “
Degradation of sulfolane using activated persulfate with UV and UV-Ozone
,”
Water Res.
125
,
325
331
(
2017
).
7.
C. F.
Yang
,
S. H.
Liu
,
Y. M.
Su
,
Y. R.
Chen
,
C. W.
Lin
, and
K. L.
Lin
, “
Bioremediation capability evaluation of benzene and sulfolane contaminated groundwater: Determination of bioremediation parameters
,”
Sci. Total Environ.
648
,
811
818
(
2019
).
8.
B.
Bartokova
,
A. G.
Marangoni
,
T.
Laredo
, and
E.
Pensini
, “
Phase behavior of sulfolane: Potential implications for transport in groundwater
,”
Colloids Surf. A
677
,
132451
(
2023
).
9.
A.
Sacco
,
G.
Petrella
,
M.
Castagnolo
, and
A.
Dell'atti
, “
Excess volumes and viscosity of water–sulfolane mixtures at 30, 40 and 50 °C
,”
Thermochim. Acta
44
,
59
66
(
1981
).
10.
S.
Xie
,
C.
Yi
, and
X.
Qiu
, “
Energy-saving recovery of acetone, butanol, and ethanol from a prefractionator by the salting-out method
,”
J. Chem. Eng. Data
58
,
3297
3303
(
2013
).
11.
M.
Li
,
B.
Zhuang
,
Y.
Lu
,
L.
An
, and
Z. G.
Wang
, “
Salt-induced liquid–liquid phase separation: Combined experimental and theoretical investigation of water–acetonitrile–salt mixtures
,”
J. Am. Chem. Soc.
143
,
773
784
(
2021
).
12.
M.
Tabata
,
M.
Kumamoto
, and
J.
Nishimoto
, “
Chemical properties of water-miscible solvents separated by salting-out and their application to solvent extraction
,”
Anal. Sci.
10
,
383
388
(
1994
).
13.
R. L.
Souza
,
R. A.
Lima
,
J. A.
Coutinho
,
C. M.
Soares
, and
Á. S.
Lima
, “
Aqueous two-phase systems based on cholinium salts and tetrahydrofuran and their use for lipase purification
,”
Sep. Purif. Technol.
155
,
118
126
(
2015
).
14.
B.
Bartokova
,
T.
Laredo
,
A. G.
Marangoni
, and
E.
Pensini
, “
Mechanism of tetrahydrofuran separation from water by stearic acid
,”
J. Mol. Liq.
391
,
123262
(
2023
).
15.
B.
Bartokova
,
A. G.
Marangoni
,
T.
Laredo
, and
E.
Pensini
, “
Role of hydrogen bonding on solvent separation using amphiphilic sorbitan ester
,”
Colloids Surf.
1
,
100004
(
2023
).
16.
B.
Bartokova
,
A. G.
Marangoni
,
T.
Laredo
,
J.
Stobbs
,
P.
Meszaros
, and
E.
Pensini
, “
Effect of hydrogen bonding on the mixing behaviour of ternary aqueous mixtures
,”
J. Mol. Liq.
383
,
122124
(
2023
).
17.
L.
Earnden
,
A. G.
Marangoni
,
T.
Laredo
,
J.
Stobbs
, and
E.
Pensini
, “
Mechanisms of separation between tetrahydrofuran and water using hydroxystearic acid
,”
Phys. Fluids
34
,
097119
(
2022
).
18.
R. G.
LeBel
and
D. A. I.
Goring
, “
Density, viscosity, refractive index, and hygroscopicity of mixtures of water and dimethyl sulfoxide
,”
J. Chem. Eng. Data
7
,
100
101
(
1962
).
19.
A.
Vishnyakov
,
A. P.
Lyubartsev
, and
A.
Laaksonen
, “
Molecular dynamics simulations of dimethyl sulfoxide and dimethyl sulfoxide−water mixture
,”
J. Phys. Chem. A
105
,
1702
1710
(
2001
).
20.
T. M.
Aminabhavi
and
B.
Gopalakrishna
, “
Density, viscosity, refractive index, and speed of sound in aqueous mixtures of N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, acetonitrile, ethylene glycol, diethylene glycol, 1, 4-dioxane, tetrahydrofuran, 2-methoxyethanol, and 2-ethoxyethanol at 298.15 K
,”
J. Chem. Eng. Data
40
,
856
861
(
1995
).
21.
M. N.
Roy
,
R.
Dey
, and
A.
Jha
, “
Study of ion−solvent interactions of some alkali metal chlorides in tetrahydrofuran+ water mixture at different temperatures
,”
J. Chem. Eng. Data
46
,
1327
1329
(
2001
).
22.
B. V.
Derjaguin
,
N. V.
Churaev
, and
V. M.
Muller
, “
The Derjaguin—Landau—Verwey—Overbeek (DLVO) theory of stability of lyophobic colloids
,” in
Surface Forces
(
Springer
,
Boston, MA
,
1987
), pp.
293
310
.
23.
T.
Marshall
,
A. G.
Marangoni
,
M. G.
Corradini
,
A.
Rodriguez-Uribe
,
M.
Misra
,
A. K.
Mohanty
,
B. M.
Rodriguez
, and
E.
Pensini
, “
Path-dependent rheology of carbon particle-hydroxyethylcellulose fluids
,”
Colloids Surf. A
612
,
126000
(
2021
).
24.
A. F.
Leontowich
,
A.
Gomez
,
B.
Diaz Moreno
,
D.
Muir
,
D.
Spasyuk
,
G.
King
,
J. W.
Reid
,
C. Y.
Kim
, and
S.
Kycia
, “
The lower energy diffraction and scattering side-bounce beamline for materials science at the Canadian Light Source
,”
J. Synchrotron Rad.
28
,
961
(
2021
).
25.
R. B.
Von Dreele
, “
Small-angle scattering data analysis in GSAS-II
,”
J. Appl. Crystallogr.
47
,
1784
1789
(
2014
).
26.
B. H.
Toby
and
R. B.
Von Dreele
, “
GSAS-II: The genesis of a modern open-source all purpose crystallography software package
,”
J. Appl. Crystallogr.
46
,
544
549
(
2013
).
27.
B.
Bartokova
,
A. G.
Marangoni
,
T.
Laredo
, and
E.
Pensini
, “
Effect of sorbitan ester structure on the separation between tetrahydrofuran and water
,”
Front. Soft Matter
3
,
1329058
(
2023
).
28.
K.
Levenberg
, “
A method for the solution of certain non-linear problems in least squares
,”
Q. Appl. Math.
2
,
164
168
(
1944
).
29.
D. W.
Marquardt
, “
An algorithm for least-squares estimation of nonlinear parameters
,”
J. Soc. Ind. Appl. Math.
11
,
431
441
(
1963
).
30.
C. C.
Pye
,
T.
Ziegler
,
E.
van Lenthe
, and
J. N.
Louwen
, “
An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package. Part II. COSMO for real solvents
,”
Can. J. Chem.
87
,
790
(
2009
).
31.
E.
Mullins
,
Y. A.
Liu
,
A.
Ghaderi
, and
S. D.
Fast
, “
Sigma profile database for predicting solid solubility in pure and mixed solvent mixtures for organic pharmacological compounds with COSMO-based thermodynamic methods
,”
Ind. Eng. Chem. Res.
47
,
1707
1725
(
2008
).
32.
B.
Bartokova
,
A. G.
Marangoni
, and
E.
Pensini
, “
Effect of sulfolane demixing and sorption on its migration through model fractured and porous media
,”
Water, Air, Soil Pollut.
235
,
97
(
2024
).
33.
M.
Holz
and
H.
Weingartner
, “
Calibration in accurate spin-echo self-diffusion measurements using 1H and less-common nuclei
,”
J. Magn. Reson.
92
,
115
125
(
1969
).
34.
T. D.
Vaden
and
J. M.
Lisy
, “
Competing non-covalent interactions in alkali metal ion-acetonitrile-water clusters
,”
J. Phys. Chem. A
109
,
3880
3886
(
2005
).
35.
R.
Besselink
,
T. M.
Stawski
,
A. E. S.
Van Driessche
, and
L. G.
Benning
, “
Not just fractal surfaces, but surface fractal aggregates: Derivation of the expression for the structure factor and its applications
,”
J. Chem. Phys.
145
,
211908
(
2016
).
36.
S.
Roy
and
B.
Bagchi
, “
Solvation dynamics of tryptophan in water-dimethyl sulfoxide binary mixture: In search of molecular origin of composition dependent multiple anomalies
,”
J. Chem. Phys.
139
,
034308
(
2013
).
37.
A.
Oleinikova
,
I.
Brovchenko
,
A.
Geiger
, and
B.
Guillot
, “
Percolation of water in aqueous solution and liquid–liquid immiscibility
,”
J. Chem. Phys.
117
,
3296
3304
(
2002
).
38.
L.
Dougan
,
S. P.
Bates
,
R.
Hargreaves
,
J. P.
Fox
,
J.
Crain
,
J. L.
Finney
,
V.
Reat
, and
A. K.
Soper
, “
Methanol-water solutions: A bi-percolating liquid mixture
,”
J. Chem. Phys.
121
,
6456
6462
(
2004
).
39.
M.
Stieger
,
J. S.
Pedersen
,
P.
Lindner
, and
W.
Richtering
, “
Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study
,”
Langmuir
20
,
7283
7292
(
2004
).
40.
C.
Hardacre
,
J. D.
Holbrey
,
C. L.
Mullan
,
T. G.
Youngs
, and
D. T.
Bowron
, “
Small angle neutron scattering from 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids ([Cnmim] [PF6], n = 4, 6, and 8)
,”
J. Chem. Phys.
133
,
074510
(
2010
).
41.
W.
Li
,
M.
Li
,
Y.
Hu
,
J.
Lu
,
A.
Lushington
,
R.
Li
,
T.
Wu
,
T. K.
Sham
, and
X.
Sun
, “
Synchrotron‐based X‐ray absorption fine structures, X‐ray diffraction, and X‐ray microscopy techniques applied in the study of lithium secondary batteries
,”
Small Methods
2
,
1700341
(
2018
).
42.
B.
Fubini
,
M.
Volante
,
V.
Bolis
, and
E.
Giamello
, “
Reactivity towards water of silicon nitride: Energy of interaction and hydration dehydration mechanism
,”
J. Mater. Sci.
24
,
549
556
(
1989
).
43.
V. V.
Tsukruk
and
V. N.
Bliznyuk
, “
Adhesive and friction forces between chemically modified silicon and silicon nitride surfaces
,”
Langmuir
14
,
446
455
(
1998
).
44.
X.
Wang
,
Y.
Liu
,
Y.
Zhang
,
T.
Zhang
,
H.
Chang
,
Y.
Zhang
, and
L.
Jiang
, “
Structural requirements of manganese oxides for methane oxidation: XAS spectroscopy and transition-state studies
,”
Appl. Catal. B
229
,
52
62
(
2018
).
45.
H.
Kim
,
W.
Lee
,
W.
Choi
,
S.
Yun
,
E.
Lee
, and
W. S.
Yoon
, “
Crystal water‐assisted additional capacity for nickel hydroxide anode materials
,”
Adv. Funct. Mater.
32
,
2110828
(
2022
).
46.
L. Å.
Näslund
,
M.
Cavalleri
,
H.
Ogasawara
,
A.
Nilsson
,
L. G.
Pettersson
,
P.
Wernet
,
D. C.
Edwards
,
M. M.
Sandstrom
, and
S.
Myneni
, “
Direct evidence of orbital mixing between water and solvated transition-metal ions: An oxygen 1s XAS and DFT study of aqueous systems
,”
J. Phys. Chem. A
107
,
6869
6876
(
2003
).
47.
Z.
Yu
and
X.
Niu
, “
The motion of three-dimensional fractal aggregates in homogeneous shear flow
,”
Phys. Fluids
36
,
013302
(
2024
).
48.
H.
Han
,
M. M.
Husein
, and
G.
Natale
, “
Rheological behavior and microstructure of AgBr nanoparticle/cetyltrimethylammonium bromide/potassium hydrogen phthalate wormlike micelles
,”
Phys. Fluids
35
,
103106
(
2023
).
49.
M. J.
Hendry
,
J. A.
Cherry
, and
E. I.
Wallick
, “
Origin and distribution of sulfate in a fractured till in southern Alberta, Canada
,”
Water Resour. Res.
22
,
45
61
, https://doi.org/10.1029/WR022i001p00045 (
1986
).
50.
A. E.
Gue
,
B.
Mayer
, and
S. E.
Grasby
, “
Origin and geochemistry of saline spring waters in the Athabasca oil sands region, Alberta, Canada
,”
Appl. Geochem.
61
,
132
145
(
2015
).
51.
K.
Jung
,
Y. S.
Ok
, and
S. X.
Chang
, “
Sulfate adsorption properties of acid-sensitive soils in the Athabasca oil sands region in Alberta, Canada
,”
Chemosphere
84
,
457
463
(
2011
).

Supplementary Material

You do not currently have access to this content.