In this paper, we focus on methodologies to inject a noise source in a numerical model of noise propagation in confined domains. This is a problem of primary importance when dealing with propagation of fluid-dynamic induced noise in confined basins, like ships at sea or wind farms. We first assess the performance of the literature hard source (HS) and transparent source methods; successively, we propose a novel method named the non-reflective HS (NRHS) method. It takes advantage of the linearity of the equation governing the propagation of acoustic waves in fluids and is based on the decomposition of the total signal in the sum of direct and reflected signals. It presents the advantages of the hard source method removing the main drawback consisting of the well-known problem of spurious reflections. To check the reliability of the HS vs the NRHS, a non-dimensional parameter (the encumbrance) has been defined, which gives a measure of the extension of the generation domain with respect to the propagation domain in relation to the principal wavelength of the acoustic waves and the presence of reflecting surfaces. The method herein developed gives accurate results in the case of a single-point source, where the literature methods behave well; more importantly, the NRHS method maintains its own accuracy when a noise source needs to be represented by a large number of points in space, situations of very practical importance where the standard methods may exhibit inaccuracy. This is a point of importance since the use of large generation domains is in favor of the accuracy of the source characterization, which can exhibit a complex directivity. The new method has been tested in a number of archetypal situations characterized by the presence of a reflecting plane, a scattering body close to the source location, and two sources placed side by side. In all cases, the method has shown its own superiority with respect to the standard HS method, still preserving the flexibility and simplicity of the latter.

1.
G.
Shannon
,
M. F.
McKenna
,
L. M.
Angeloni
,
K. R.
Crooks
,
K. M.
Fristrup
,
E.
Brown
,
K. A.
Warner
,
M. D.
Nelson
,
C.
White
,
J.
Briggs
,
S.
McFarland
, and
G.
Wittemyer
, “
A synthesis of two decades of research documenting the effects of noise on wildlife
,”
Biol. Rev.
91
(
4
),
982
1005
(
2016
).
2.
J. A.
Hildebrand
, “
Anthropogenic and natural sources of ambient noise in the ocean
,”
Mar. Ecol. Prog. Ser.
395
,
5
20
(
2009
).
3.
T.
Münzel
,
M.
Sørensen
, and
A.
Daiber
, “
Transportation noise pollution and cardiovascular disease
,”
Nat. Rev. Cardiol.
18
(
9
),
619
636
(
2021
).
4.
E.
Peris
,
N.
Blanes
,
J.
Fons
,
M.
de la Maza
,
J. M.
Ramos
,
F.
Domingues
,
K.
Biala
,
M.
Peterlin
,
C.
Ganzleben
, and
M.
Adams
, “
Environmental noise in Europe: 2020
,”
Eur. Environ. Agency
1
,
104
(
2020
).
5.
L.
Goines
and
L.
Hagler
, “
Noise pollution: A modem plague
,”
South. Med. J.
100
(
3
),
287
294
(
2007
).
6.
P. K.
McGregor
,
A. G.
Horn
,
M. L.
Leonard
, and
F.
Thomsen
, “
Anthropogenic noise and conservation
,”
Animal Communication and Noise
(
Springer
,
2013
), pp.
409
444
.
7.
R.
Thompson
,
R. B.
Smith
,
Y. B.
Karim
,
C.
Shen
,
K.
Drummond
,
C.
Teng
, and
M. B.
Toledano
, “
Noise pollution and human cognition: An updated systematic review and meta-analysis of recent evidence
,”
Environ. Int.
158
,
106905
(
2022
).
8.
J. E.
Ffowcs Williams
and
D. L.
Hawkings
, “
Sound generation by turbulence and surfaces in arbitrary motion
,”
Philos. Trans. R. Soc. London, Ser. A
264
(
1151
),
321
342
(
1969
).
9.
N.
Curle
, “
The influence of solid boundaries upon aerodynamic sound
,”
Proc. R. Soc. London, Ser. A
231
(
1187
),
505
514
(
1955
).
10.
M.
Wang
,
J. B.
Freund
, and
S. K.
Lele
, “
Computational prediction of flow-generated sound
,”
Annu. Rev. Fluid Mech.
38
,
483
512
(
2006
).
11.
L. S.
Wang
,
K.
Heaney
,
T.
Pangerc
,
P.
Theobald
,
S. P.
Robinson
, and
M.
Ainslie
, “
Review of underwater acoustic propagation models
,”
National Physical Laboratory Report No. AC 12
,
2014
.
12.
K. S.
Yee
, “
Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media
,”
IEEE Trans. Antennas Propag.
14
(
3
),
302
307
(
1966
).
13.
H.
Jeong
and
Y. W.
Lam
, “
Source implementation to eliminate low-frequency artifacts in finite difference time domain room acoustic simulation
,”
J. Acoust. Soc. Am.
131
(
1
),
258
268
(
2012
).
14.
J. B.
Schneider
,
C. L.
Wagner
, and
S. L.
Broschat
, “
Implementation of transparent sources embedded in acoustic finite-difference time-domain grids
,”
J. Acoust. Soc. Am.
103
(
1
),
136
142
(
1998
).
15.
J.
Sheaffer
,
M.
van Walstijn
, and
B.
Fazenda
, “
Physical and numerical constraints in source modeling for finite difference simulation of room acoustics
,”
J. Acoust. Soc. Am.
135
(
1
),
251
261
(
2014
).
16.
D. T.
Murphy
,
A.
Southern
, and
L.
Savioja
, “
Source excitation strategies for obtaining impulse responses in finite difference time domain room acoustics simulation
,”
Appl. Acoust.
82
,
6
14
(
2014
).
17.
E.
Martin
,
Y. T.
Ling
, and
B. E.
Treeby
, “
Simulating focused ultrasound transducers using discrete sources on regular Cartesian grids
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
63
(
10
),
1535
1542
(
2016
).
18.
B. E.
Treeby
,
J.
Budisky
,
E. S.
Wise
,
J.
Jaros
, and
B. T.
Cox
, “
Rapid calculation of acoustic fields from arbitrary continuous-wave sources
,”
J. Acoust. Soc. Am.
143
(
1
),
529
537
(
2018
).
19.
S.
Ianniello
,
R.
Muscari
, and
A.
Di Mascio
, “
Ship underwater noise assessment by the acoustic analogy. I. Nonlinear analysis of a marine propeller in a uniform flow
,”
J. Mar. Sci. Technol.
18
,
547
570
(
2013
).
20.
M.
Cianferra
and
V.
Armenio
, “
Scaling properties of the Ffowcs-Williams and Hawkings equation for complex acoustic source close to a free surface
,”
J. Fluid Mech.
927
,
A2
(
2021
).
21.
G.
Rismondo
,
M.
Cianferra
, and
V.
Armenio
, “
Acoustic response of a vibrating elongated cylinder in a hydrodynamic turbulent flow
,”
J. Mar. Sci. Eng.
10
(
12
),
1918
(
2022
).
22.
K. S.
Brentner
and
F.
Farassat
, “
Modeling aerodynamically generated sound of helicopter rotors
,”
Prog. Aerosp. Sci.
39
(
2–3
),
83
120
(
2003
).
23.
G. A.
Brès
,
F. E.
Ham
,
J. W.
Nichols
, and
S. K.
Lele
, “
Unstructured large-eddy simulations of supersonic jets
,”
AIAA J.
55
(
4
),
1164
1184
(
2017
).
24.
S.
Bilbao
and
J.
Ahrens
, “
Modeling continuous source distributions in wave-based virtual acoustics
,”
J. Acoust. Soc. Am.
148
(
6
),
3951
3962
(
2020
).
25.
E. S.
Wise
,
B.
Cox
,
J.
Jaros
, and
B. E.
Treeby
, “
Representing arbitrary acoustic source and sensor distributions in Fourier collocation methods
,”
J. Acoust. Soc. Am.
146
(
1
),
278
288
(
2019
).
26.
J. B.
Schneider
,
C. L.
Wagner
, and
O. M.
Ramahi
, “
Implementation of transparent sources in FDTD simulations
,”
IEEE Trans. Antennas Propag.
46
(
8
),
1159
1168
(
1998
).
27.
G.
Petris
,
M.
Cianferra
, and
V.
Armenio
, “
Marine propeller noise propagation within bounded domains
,”
Ocean Eng.
265
,
112618
(
2022
).
28.
A. D.
Pierce
,
Acoustics: An Introduction to its Physical Principles and Applications
(
Springer
,
2019
).
29.
A.
Chern
, “
A reflectionless discrete perfectly matched layer
,”
J. Comput. Phys.
381
,
91
109
(
2019
).
30.
G.
Petris
,
M.
Cianferra
, and
V.
Armenio
, “
A numerical method for the solution of the three-dimensional acoustic wave equation in a marine environment considering complex sources
,”
Ocean Eng.
256
,
111459
(
2022
).
31.
S. W.
Rienstra
and
A.
Hirschberg
,
An Introduction to Acoustics
(
Eindhoven University of Technology
,
2004
).
32.
M. A.
Dablain
, “
The application of high-order differencing to the scalar wave equation
,”
Geophysics
51
(
1
),
54
66
(
1986
).
33.
H.
Lloyd
, “
On a new case of interference of the rays of light
,”
Trans. R. Irish Acad.
17
,
171
177
(
1831
).
34.
S.
Bilbao
and
B.
Hamilton
, “
Directional sources in wave-based acoustic simulation
,”
IEEE/ACM Trans. Audio Speech. Lang. Process.
27
(
2
),
415
428
(
2019
).
35.
J.
Belibassakis
,
K.
Prospathopoulos
, and
I.
Malefaki
, “
Scattering and directionality effects of noise generation from flapping thrusters used for propulsion of small ocean vehicles
,”
J. Mar. Sci. Eng.
10
(
8
),
1129
(
2022
).
36.
K.
Belibassakis
and
J.
Prospathopoulos
, “
A 3D-BEM for underwater propeller noise propagation in the ocean environment including hull scattering effects
,”
Ocean Eng.
286
,
115544
(
2023
).
37.
B. J.
Noye
and
R. J.
Arnold
, “
Accurate finite difference approximations for the Neumann condition on a curved boundary
,”
Appl. Math. Modell.
14
(
1
),
2
13
(
1990
).
You do not currently have access to this content.