We study analytically and numerically a frequency downshifting due to power-type frequency-dependent decay of surface waves in the ocean covered by ice floes. The downshifting is obtained both within the linear model and within the nonlinear Schrödinger (NLS) equation augmented by viscous terms for the initial condition in the form of an NLS envelope soliton. It is shown that the frequency-dependent dissipation produces a more substantial downshifting when the spectrum is relatively wide. As a result, the nonlinear adiabatic scenario of wavetrain evolution provides a downshifting remarkably smaller in magnitude than in the linear regime. Meanwhile, interactions between nonlinear wavegroups lead to spectral broadening and, thus, result in fast substantial frequency downshifts. Analytic estimates are obtained for an arbitrary power n of the dependence of a dissipation rate on frequency ω n. The developed theory is validated by the numerical modeling of the generalized NLS equation with dissipative terms. Estimates of frequency downshift are given for oceanic waves of realistic parameters.

1.
M. J.
Ablowitz
and
H.
Segur
,
Solitons and the Inverse Scattering Transform
(
SIAM
,
Philadelphia
,
1981
).
2.
A.
Alberello
and
E. I.
Părău
, “
A dissipative nonlinear Schrödinger model for wave propagation in the marginal ice zone
,”
Phys. Fluids
34
,
061702
(
2022
).
3.
A.
Alberello
,
E. I.
Părău
, and
A.
Chabchoub
, “
The dynamics of unstable waves in sea ice
,”
Sci. Rep.
13
,
13654
(
2023
).
4.
A. E.
Bukatov
,
Waves in a Sea with a Floating Ice Cover
(
Marine Hydrophysical Institute of the RAS
,
2017
) (in Russian).
5.
A.
Chabchoub
,
N.
Hoffmann
,
M.
Onorato
,
G.
Genty
,
J. M.
Dudley
, and
N.
Akhmediev
, “
Hydrodynamic supercontinuum
,”
Phys. Rev. Lett.
111
,
054104
(
2013
).
6.
A.
Chabchoub
,
A.
Slunyaev
,
N.
Hoffmann
,
F.
Dias
,
B.
Kibler
,
G.
Genty
,
J. M.
Dudley
, and
N.
Akhmediev
, “
The Peregrine breather on the zero-background limit as the two-soliton degenerate solution: An experimental study
,”
Front. Phys.
9
,
633549
(
2021
).
7.
J. M.
Dudley
,
G.
Genty
,
F.
Dias
,
B.
Kibler
, and
N.
Akhmediev
, “
Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation
,”
Opt. Express
17
,
21497
21508
(
2009
).
8.
G.
Ducrozet
,
A. V.
Slunyaev
, and
Y. A.
Stepanyants
, “
Transformation of envelope solitons on a bottom step
,”
Phys. Fluids
33
,
066606
(
2021
).
9.
D.
Eeltink
,
A.
Lemoine
,
H.
Branger
,
O.
Kimmoun
,
C.
Kharif
,
J.
Carter
,
A.
Chabchoub
,
M.
Brunetti
, and
J.
Kasparian
, “
Spectral up- and downshifting of Akhmediev breathers under wind forcing
,”
Phys. Fluids
29
,
107103
(
2017
).
10.
A. L.
Fabrikant
, “
Nonlinear dynamics of wave packets in a dissipative medium
,”
J. Exp. Theor. Phys.
59
,
274
278
(
1984
).
11.
A. L.
Fabrikant
and
Y. A.
Stepanyants
,
Propagation of Waves in Shear Flows
(
World Scientific
,
1998
).
12.
K. A.
Gorshkov
and
L. A.
Ostrovsky
, “
Interactions of solitons in nonintegrable systems: Direct perturbation method and applications
,”
Physica
3
,
428
438
(
1981
).
13.
R.
Grimshaw
,
Y.
Stepanyants
, and
A.
Alias
, “
Formation of wave packets in the Ostrovsky equation for both normal and anomalous dispersion
,”
Proc. R. Soc. A
472
,
20150416
(
2016
).
14.
L.
Hošeková
,
M. P.
Malila
,
W. E.
Rogers
,
L. A.
Roach
,
E.
Eidam
,
L.
Rainville
,
N.
Kumar
, and
J.
Thomson
, “
Attenuation of ocean surface waves in pancake and Frazil sea ice along the coast of the Chukchi Sea
,”
J. Geophys. Res.
125
(
12
),
e2020JC016746
, https://doi.org/10.1029/2020JC016746 (
2020
).
15.
D. Y.
Kheisin
,
Dynamics of Floating Ice Cover
(
U.S. Army Foreign Science and Technology Center
,
1967
) (in Russian).
16.
L.
Kohout
,
M.
Smith
,
L. A.
Roach
,
G.
Williams
,
F.
Montiel
, and
M. J. M.
Williams
, “
Observations of exponential wave attenuation in Antarctic sea ice during the PIPERS campaign
,”
Ann. Glaciol.
61
,
196
209
(
2020
).
17.
A.
Korpel
and
P.
Banerjee
, “
A heuristic guide to nonlinear dispersive wave equations and soliton-type solutions
,”
Proc. IEEE
72
,
1109
1130
(
1984
).
18.
H.
Lamb
,
Hydrodynamics
(
Dover
,
New York
,
1932
).
19.
L. D.
Landay
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon Press
,
Oxford
,
1987
).
20.
J. B.
Keller
, “
Gravity waves on ice-covered water
,”
J. Geophys. Res.
103
,
7663
7669
, https://doi.org/10.1029/97JC02966 (
1998
).
21.
H.
Meylan
,
L. G.
Bennetts
,
J. E. M.
Mosig
,
W. E.
Rogers
,
M. J.
Doble
, and
M. A.
Peter
, “
Dispersion relations, power laws, and energy loss for waves in the marginal ice zone
,”
J. Geophys. Res.
123
,
3322
3335
, https://doi.org/10.1002/2018JC013776 (
2018
).
22.
B.-Y.
Ni
,
T. I.
Khabakhpasheva
, and
Y. A.
Semenov
, “
Nonlinear gravity waves in the channel covered by broken ice
,”
Phys. Fluids
35
,
102118
(
2023
).
23.
M.
Onorato
,
A. R.
Osborne
,
M.
Serio
, and
S.
Bertone
, “
Freak waves in random oceanic sea states
,”
Phys. Rev. Lett.
86
,
5831
5834
(
2001
).
24.
A.
Osborne
,
Nonlinear Ocean Waves and the Inverse Scattering Transform
(
Academic Pres
,
2010
).
25.
L.
Ostrovsky
,
Slowly Varying Oscillations and Waves
(
University of Colorado
,
Boulder, USA
,
2020
).
26.
D. H.
Peregrine
, “
Water waves, nonlinear Schrodinger equations and their solutions
,”
J. Aust. Math. Soc., Ser. B
25
,
16
43
(
1983
).
27.
V. A.
Squire
, “
Ocean Wave interactions with sea ice: A reappraisal
,”
Annu. Rev. Fluid Mech.
52
,
37
60
(
2020
).
28.
A. V.
Slunyaev
and
Y. A.
Stepanyants
, “
Modulation property of flexural-gravity waves on a water surface covered by a compressed ice sheet
,”
Phys. Fluids
34
,
077121
(
2022
).
29.
Y.
Stepanyants
, “
Dynamics of internal envelope solitons in a rotating fluid of a variable depth
,”
Fluids
4
,
56
(
2019
).
30.
Y. A.
Stepanyants
and
I. V.
Sturova
, “
Waves on a compressed floating ice plate caused by motion of a dipole in water
,”
J. Fluid Mech.
907
,
A7-1
A7-29
(
2021
).
31.
M.
Onorato
,
L.
Cavaleri
,
S.
Randoux
,
P.
Suret
,
M. I.
Ruiz
,
M.
de Alfonso
, and
A.
Benetazzo
, “
Observation of a giant nonlinear wave-packet on the surface of the ocean
,”
Sci. Rep.
11
,
23606
(
2021
).
32.
L.
Shemer
and
A.
Sergeeva
, “
An experimental study of spatial evolution of statistical parameters in a unidirectional narrow-banded random wavefield
,”
J. Geophys. Res.
114
,
C01015
, https://doi.org/10.1029/2008JC005077 (
2009
).
33.
A. V.
Slunyaev
, “
Persistence of hydrodynamic envelope solitons: Detection and rogue wave occurrence
,”
Phys. Fluids
33
,
036606
(
2021
).
34.
A.
Slunyaev
,
G. F.
Clauss
,
M.
Klein
, and
M.
Onorato
, “
Simulations and experiments of short intense envelope solitons of surface water waves
,”
Phys. Fluids
25
,
067105
(
2013
).
35.
A. V.
Slunyaev
and
A. V.
Sergeeva
, “
Stochastic simulation of unidirectional intense waves in deep water applied to rogue waves
,”
JETP Lett.
94
,
779
786
(
2011
).
36.
P.
Suret
,
A.
Tikan
,
F.
Bonnefoy
,
F.
Copie
,
G.
Ducrozet
,
A.
Gelash
,
G.
Prabhudesai
,
G.
Michel
,
A.
Cazaubiel
,
E.
Falcon
,
G.
El
, and
S.
Randoux
, “
Nonlinear spectral synthesis of soliton gas in deep-water surface gravity waves
,”
Phys. Rev. Lett.
125
,
264101
(
2020
).
You do not currently have access to this content.