In this work, we enhance the fifth-order Weighted Essentially Non-Oscillatory (WENO) shock-capturing scheme by integrating deep learning techniques. We improve the established WENO algorithm by training a compact neural network to dynamically adjust the smoothness indicators within the WENO scheme. This modification boosts the accuracy of the numerical results, particularly in proximity to abrupt shocks. Notably, our approach eliminates the need for additional post-processing steps, distinguishing it from previous deep learning-based methods. We substantiate the superiority of our new approach through the examination of multiple examples from the literature concerning the two-dimensional Euler equations of gas dynamics. Through a thorough investigation of these test problems, encompassing various shocks and rarefaction waves, our novel technique consistently outperforms the traditional fifth-order WENO scheme. This superiority is especially evident in cases where numerical solutions exhibit excessive diffusion or overshoot around shocks.

1.
M.
Crandall
and
A.
Majda
, “
Monotone difference approximations for scalar conservation laws
,”
Math. Comp.
34
,
1
21
(
1980
).
2.
A.
Harten
, “
High resolution schemes for hyperbolic conservation laws
,”
J. Comput. Phys.
49
(
3
),
357
393
(
1983
).
3.
A.
Harten
,
B.
Engquist
,
S.
Osher
, and
S.
Chakravarthy
, “
Uniformly high order accurate essentially non-oscillatory schemes, III
,” in
Upwind and High-Resolution Schemes
, edited by
M.
Hussaini
,
B.
van Leer
, and
J.
Van Rosendale
(
Springer
,
1987
), pp.
218
290
.
4.
G.-S.
Jiang
and
C.-W.
Shu
, “
Efficient implementation of weighted ENO schemes
,”
J. Comput. Phys.
126
(
1
),
202
228
(
1996
).
5.
C.-W.
Shu
, “
Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws
,” in
Advanced Numerical Approximation of Nonlinear Hyperbolic Equations: Lectures Given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) Held in Cetraro, Italy, 23–28 June 1997
, edited by
A.
Quarteroni
(
Springer
,
Berlin
,
1998
), pp.
325
432
.
6.
J.
Qiu
and
C.-W.
Shu
, “
Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: One-dimensional case
,”
J. Comput. Phys.
193
(
1
),
115
135
(
2004
).
7.
J.
Qiu
and
C.-W.
Shu
, “
Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method II: Two dimensional case
,”
Comput. Fluids
34
(
6
),
642
663
(
2005
).
8.
S.
Pirozzoli
, “
Conservative hybrid compact-WENO schemes for shock-turbulence interaction
,”
J. Comput. Phys.
178
(
1
),
81
117
(
2002
).
9.
D. J.
Hill
and
D. I.
Pullin
, “
Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks
,”
J. Comput. Phys.
194
(
2
),
435
450
(
2004
).
10.
A. D.
Jagtap
and
R.
Kumar
, “
Kinetic theory based multi-level adaptive finite difference WENO schemes for compressible Euler equations
,”
Wave Motion
98
,
102626
(
2020
).
11.
A. K.
Henrick
,
T. D.
Aslam
, and
J. M.
Powers
, “
Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points
,”
J. Comput. Phys.
207
(
2
),
542
567
(
2005
).
12.
R.
Borges
,
M.
Carmona
,
B.
Costa
, and
W. S.
Don
, “
An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws
,”
J. Comput. Phys.
227
(
6
),
3191
3211
(
2008
).
13.
M.
Castro
,
B.
Costa
, and
W. S.
Don
, “
High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws
,”
J. Comput. Phys.
230
(
5
),
1766
1792
(
2011
).
14.
Y.
Ha
,
C. H.
Kim
,
Y. J.
Lee
, and
J.
Yoon
, “
An improved weighted essentially non-oscillatory scheme with a new smoothness indicator
,”
J. Comput. Phys.
232
(
1
),
68
86
(
2013
).
15.
J.
Zhu
and
J.
Qiu
, “
A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws
,”
J. Comput. Phys.
318
,
110
121
(
2016
).
16.
S.
Rathan
,
R.
Kumar
, and
A. D.
Jagtap
, “
L1-type smoothness indicators based WENO scheme for nonlinear degenerate parabolic equations
,”
Appl. Math. Comput.
375
,
125112
(
2020
).
17.
M.
Raissi
,
P.
Perdikaris
, and
G.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
18.
A. D.
Jagtap
,
Z.
Mao
,
N.
Adams
, and
G. E.
Karniadakis
, “
Physics-informed neural networks for inverse problems in supersonic flows
,”
J. Comput. Phys.
466
,
111402
(
2022
).
19.
A. D.
Jagtap
,
D.
Mitsotakis
, and
G. E.
Karniadakis
, “
Deep learning of inverse water waves problems using multi-fidelity data: Application to Serre–Green–Naghdi equations
,”
Ocean Eng.
248
,
110775
(
2022
).
20.
A. D.
Jagtap
,
E.
Kharazmi
, and
G. E.
Karniadakis
, “
Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
,”
Comput. Methods Appl. Mech. Eng.
365
,
113028
(
2020
).
21.
A. D.
Jagtap
and
G. E.
Karniadakis
, “
Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
,”
Commun. Comput. Phys.
28
(
5
),
2002
2041
(
2020
).
22.
K.
Shukla
,
A. D.
Jagtap
, and
G. E.
Karniadakis
, “
Parallel physics-informed neural networks via domain decomposition
,”
J. Comput. Phys.
447
,
110683
(
2021
).
23.
M.
Penwarden
,
A. D.
Jagtap
,
S.
Zhe
,
G. E.
Karniadakis
, and
R. M.
Kirby
, “
A unified scalable framework for causal sweeping strategies for physics-informed neural networks (PINNs) and their temporal decompositions
,”
J. Comput. Phys.
493
,
112464
(
2023
).
24.
T.
De Ryck
,
A. D.
Jagtap
, and
S.
Mishra
, “
Error estimates for physics informed neural networks approximating the Navier–Stokes equations
,” arXiv:2203.09346 (
2022
).
25.
V.
Grimm
,
A.
Heinlein
, and
A.
Klawonn
, “
Learning the solution operator of two-dimensional incompressible Navier–Stokes equations using physics-aware convolutional neural networks
,” arXiv:2308.02137 (
2023
).
26.
L.
Drozda
,
P.
Mohanamuraly
,
L.
Cheng
,
C.
Lapeyre
,
G.
Daviller
,
Y.
Realpe
,
A.
Adler
,
G.
Staffelbach
, and
T.
Poinsot
, “
Learning an optimised stable Taylor–Galerkin convection scheme based on a local spectral model for the numerical error dynamics
,”
J. Comput. Phys.
493
,
112430
(
2023
).
27.
Z.
Mao
,
A. D.
Jagtap
, and
G. E.
Karniadakis
, “
Physics-informed neural networks for high-speed flows
,”
Comput. Methods Appl. Mech. Eng.
360
,
112789
(
2020
).
28.
K.
van der Sande
,
N.
Flyer
, and
B.
Fornberg
, “
Accelerating explicit time-stepping with spatially variable time steps through machine learning
,”
J. Sci. Comput.
96
(
1
),
31
(
2023
).
29.
Y.
Bar-Sinai
,
S.
Hoyer
,
J.
Hickey
, and
M. P.
Brenner
, “
Learning data-driven discretizations for partial differential equations
,”
Proc. Natl. Acad. Sci. U. S. A.
116
(
31
),
15344
15349
(
2019
).
30.
A.
Beck
,
D.
Flad
, and
C.-D.
Munz
, “
Deep neural networks for data-driven LES closure models
,”
J. Comput. Phys.
398
,
108910
(
2019
).
31.
A. D.
Beck
,
J.
Zeifang
,
A.
Schwarz
, and
D. G.
Flad
, “
A neural network based shock detection and localization approach for discontinuous Galerkin methods
,”
J. Comput. Phys.
423
,
109824
(
2020
).
32.
D. A.
Bezgin
,
S. J.
Schmidt
, and
N. A.
Adams
, “
A data-driven physics-informed finite-volume scheme for nonclassical undercompressive shocks
,”
J. Comput. Phys.
437
,
110324
(
2021
).
33.
D. A.
Bezgin
,
A. B.
Buhendwa
, and
N. A.
Adams
, “
JAX-fluids: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows
,”
Comput. Phys. Commun.
282
,
108527
(
2023
).
34.
J.
Magiera
,
D.
Ray
,
J. S.
Hesthaven
, and
C.
Rohde
, “
Constraint-aware neural networks for Riemann problems
,”
J. Comput. Phys.
409
,
109345
(
2020
).
35.
D.
Kochkov
,
J. A.
Smith
,
A.
Alieva
,
Q.
Wang
,
M. P.
Brenner
, and
S.
Hoyer
, “
Machine learning–accelerated computational fluid dynamics
,”
Proc. Natl. Acad. Sci. U. S. A.
118
(
21
),
e2101784118
(
2021
).
36.
T.
Kossaczká
,
M.
Ehrhardt
, and
M.
Günther
, “
Deep FDM: Enhanced finite difference methods by deep learning
,”
Franklin Open
4
,
100039
(
2023
).
37.
Y.
Wang
, “
Learning to discretize: Solving 1D scalar conservation laws via deep reinforcement learning
,”
Comput. Phys. Commun.
28
(
5
),
2158
2179
(
2020
).
38.
Z.
Sun
, “
Convolution neural network shock detector for numerical solution of conservation laws
,”
Comput. Phys. Commun.
28
(
5
),
2075
2108
(
2020
).
39.
B.
Stevens
and
T.
Colonius
, “
Enhancement of shock-capturing methods via machine learning
,”
Theor. Comput. Fluid Dyn.
34
(
3
),
483
496
(
2020
).
40.
Q.
Liu
and
X.
Wen
, “
The WENO reconstruction based on the artificial neural network
,”
Adv. Appl. Math.
9
(
4
),
574
583
(
2020
).
41.
R.
Wang
and
R. J.
Spiteri
, “
Linear instability of the fifth-order WENO method
,”
SIAM J. Numer. Anal.
45
(
5
),
1871
1901
(
2007
).
42.
T.
Kossaczká
,
M.
Ehrhardt
, and
M.
Günther
, “
Enhanced fifth order WENO shock-capturing schemes with deep learning
,”
Results Appl. Math.
12
,
100201
(
2021
).
43.
T.
Kossaczká
,
M.
Ehrhardt
, and
M.
Günther
, “
A neural network enhanced weighted essentially non-oscillatory method for nonlinear degenerate parabolic equations
,”
Phys. Fluids
34
(
2
),
026604
(
2022
).
44.
T.
Kossaczká
,
M.
Ehrhardt
, and
M.
Günther
, “
A deep smoothness WENO method with applications in option pricing
,” in
Progress in Industrial Mathematics at ECMI 2021
, edited by
M.
Ehrhardt
and
M.
Günther
(
Springer
,
2022
), pp.
417
423
.
45.
A. D.
Jagtap
,
K.
Kawaguchi
, and
G. E.
Karniadakis
, “
Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
,”
J. Comput. Phys.
404
,
109136
(
2020
).
46.
A. D.
Jagtap
,
K.
Kawaguchi
, and
G.
Em Karniadakis
, “
Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks
,”
Proc. R. Soc. A
476
(
2239
),
20200334
(
2020
).
47.
A. D.
Jagtap
,
Y.
Shin
,
K.
Kawaguchi
, and
G. E.
Karniadakis
, “
Deep Kronecker neural networks: A general framework for neural networks with adaptive activation functions
,”
Neurocomputing
468
,
165
180
(
2022
).
48.
A. D.
Jagtap
and
G. E.
Karniadakis
, “
How important are activation functions in regression and classification? a survey, performance comparison, and future directions
,”
J. Mach. Learn. Model. Comput.
4
(
1
),
21
75
(
2023
).
49.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
50.
C. W.
Schulz-Rinne
, “
Classification of the Riemann problem for two-dimensional gas dynamics
,”
SIAM J. Math. Anal.
24
(
1
),
76
88
(
1993
).
51.
C. W.
Schulz-Rinne
,
J. P.
Collins
, and
H. M.
Glaz
, “
Numerical solution of the Riemann problem for two-dimensional gas dynamics
,”
SIAM J. Sci. Comput.
14
(
6
),
1394
1414
(
1993
).
52.
T.
Chang
,
G.-Q.
Chen
, and
S.
Yang
, “
On the 2-D Riemann problem for the compressible Euler equations. I. Interaction of shocks and rarefaction waves
,”
Discrete Contin. Dyn. Syst.
1
(
4
),
555
584
(
1995
).
53.
T.
Chang
,
G.-Q.
Chen
, and
S.
Yang
, “
On the 2-D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities
,”
Discrete Contin. Dyn. Syst.
6
(
2
),
419
430
(
2000
).
54.
A.
Kurganov
and
E.
Tadmor
, “
Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers
,”
Numer. Methods Partial Differ. Equations
18
(
5
),
584
608
(
2002
).
55.
T.
Zhang
and
Y. X.
Zheng
, “
Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems
,”
SIAM J. Math. Anal.
21
(
3
),
593
630
(
1990
).
56.
C.-W.
Shu
,
T. A.
Zang
,
G.
Erlebacher
,
D.
Whitaker
, and
S.
Osher
, “
High-order ENO schemes applied to two-and three-dimensional compressible flow
,”
Appl. Numer. Math.
9
(
1
),
45
71
(
1992
).
You do not currently have access to this content.