The present study provides novel insights in how spatial velocity variations in a heterogeneous porous medium cause the dispersion of a passive tracer. The study consists of two parts. The first part describes a series of numerical computations of the axial dispersion in the flow through heterogeneous porous media, idealized as Darcy flow through two-dimensional and three-dimensional patchwork geometries of zones with randomized permeability fields. Data on the axial dispersion were obtained using the mean age theory, which transforms the transient advection–diffusion equation into the steady-state mean age field equation, thus reducing the required computational effort by multiple orders of magnitude. This allowed to consider a sufficiently large number of randomizations to obtain a statistically representative ensemble average, as well as to consider sufficiently large systems to reduce the influence of boundary conditions. In the second part, it is shown that the relation between the axial dispersion coefficient and the velocity can be represented as a series, summing up the effect of velocity differences on all length scales, assuming the velocity differences are analogous to white noise. The sum can be closely fitted by a logarithmic law containing only two parameters with a well-defined physical meaning. A similar logarithmic dependency was also obtained by Saffman, Koch, and Brady. However, the logarithmic dependency obtained in the present work emerges from the heterogeneity of the porous medium, whereas the logarithmic dependency in the aforementioned works emerged from the no-slip boundary conditions at solid surfaces.

1.
P. G.
Saffman
, “
A theory of dispersion in a porous medium
,”
J. Fluid Mech.
6
(
03
),
321
(
1959
).
2.
J. C.
Giddings
,
Dynamics of Chromatography: Principles and Theory
(
Marcel Dekker
,
New York
,
1965
).
3.
D. L.
Koch
and
J. F.
Brady
, “
Dispersion in fixed beds
,”
J. Fluid Mech.
154
,
399
427
(
1985
).
4.
D. L.
Koch
,
R. G.
Cox
,
H.
Brenner
, and
J. F.
Brady
, “
The effect of order on dispersion in porous media
,”
J. Fluid Mech.
200
,
173
188
(
1989
).
5.
D. J.
Gunn
, “
On axial dispersion in fixed beds
,”
Chem. Eng. Process.
32
(
6
),
333–338
(
1993
).
6.
M.
Dentz
,
J. J.
Hidalgo
, and
D.
Lester
, “
Mixing in porous media: Concepts and approaches across scales
,”
Transp. Porous Media
146
(
1–2
),
5–53
(
2023
).
7.
U.
Tallarek
,
D.
Hlushkou
, and
A.
Höltzel
, “
Solute sorption, diffusion, and advection in macro-mesoporous materials: Toward a realistic bottom-up simulation strategy
,”
J. Phys. Chem. C
126
(
5
),
2336–2348
(
2022
).
8.
M.
Dentz
,
T.
Le Borgne
,
A.
Englert
, and
B.
Bijeljic
, “
Mixing, spreading and reaction in heterogeneous media: A brief review
,”
J. Contam. Hydrol.
120–121
(
C
),
1–17
(
2011
).
9.
B.
Bijeljic
,
A.
Raeini
,
P.
Mostaghimi
, and
M. J.
Blunt
, “
Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images
,”
Phys. Rev. E
87
(
1
),
013011
(
2013
).
10.
H.
Brenner
and
D.
Edwards
,
Macrotransport Processes
(
Butterworth-Heinemann
,
Oxford
,
1993
).
11.
T.
Le Borgne
,
M.
Dentz
, and
E.
Villermaux
, “
Stretching, coalescence, and mixing in porous media
,”
Phys. Rev. Lett.
110
(
20
),
204501
(
2013
).
12.
T.
Le Borgne
,
M.
Dentz
, and
E.
Villermaux
, “
The lamellar description of mixing in porous media
,”
J. Fluid Mech.
770
,
458
(
2015
).
13.
A. E.
Reising
,
S.
Schlabach
,
V.
Baranau
,
D.
Stoeckel
, and
U.
Tallarek
, “
Analysis of packing microstructure and wall effects in a narrow-bore ultrahigh pressure liquid chromatography column using focused ion-beam scanning electron microscopy
,”
J. Chromatogr. A
1513
,
172
(
2017
).
14.
F.
Gritti
, “
On the relationship between radial structure heterogeneities and efficiency of chromatographic columns
,”
J. Chromatogr. A
1533
,
112
(
2018
).
15.
K. S.
Mriziq
,
J. A.
Abia
,
Y.
Lee
, and
G.
Guiochon
, “
Structural radial heterogeneity of a silica-based wide-bore monolithic column
,”
J. Chromatogr. A
1193
(
1–2
),
97
(
2008
).
16.
J. A.
Abia
,
K. S.
Mriziq
, and
G. A.
Guiochon
, “
Radial distribution of the contributions to band broadening of a silica-based semi-preparative monolithic column
,”
J. Sep. Sci.
32
(
7
),
923
(
2009
).
17.
K.
Broeckhoven
and
G.
Desmet
, “
Numerical and analytical solutions for the column length-dependent band broadening originating from axisymmetrical trans-column velocity gradients
,”
J. Chromatogr. A
1216
(
9
),
1325
(
2009
).
18.
D. R.
Lester
,
A.
Bandopadhyay
,
M.
Dentz
, and
T.
Le Borgne
, “
Hydrodynamic dispersion and lamb surfaces in Darcy flow
,”
Transp. Porous Media
130
(
3
),
903
(
2019
).
19.
D. R.
Lester
,
M.
Dentz
,
A.
Bandopadhyay
, and
T.
Le Borgne
, “
The Lagrangian kinematics of three-dimensional Darcy flow
,”
J. Fluid Mech.
918
,
A27
(
2021
).
20.
D. R.
Lester
,
M.
Dentz
,
A.
Bandopadhyay
, and
T.
Le Borgne
, “
Fluid deformation in isotropic Darcy flow
,”
J. Fluid Mech.
945
,
A18
(
2022
).
21.
S.
Ergün
, “
Fluid flow through packed columns
,”
Chem. Eng. Prog.
48
(
2
),
89–94
(
1952
).
22.
D.
Hlushkou
and
U.
Tallarek
, “
Transition from creeping via viscous-inertial to turbulent flow in fixed beds
,”
J. Chromatogr. A
1126
(
1–2
),
70
(
2006
).
23.
H. C.
Brinkman
, “
A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles
,”
Flow Turbul. Combust.
1
(
1
),
27
34
(
1949
).
24.
R. J.
Hill
, “
Hydrodynamic permeability of circular-inclusion-doped Brinkman media
,”
J. Fluid Mech.
972
,
A25
(
2023
).
25.
L. W.
Gelhar
and
C. L.
Axness
, “
Three‐dimensional stochastic analysis of macrodispersion in aquifers
,”
Water Resour. Res.
19
(
1
),
161
, https://doi.org/10.1029/WR019i001p00161 (
1983
).
26.
L. W.
Gelhar
,
C.
Welty
, and
K. R.
Rehfeldt
, “
A critical review of data on field‐scale dispersion in aquifers
,”
Water Resour. Res.
28
(
7
),
1955
, https://doi.org/10.1029/92WR00607 (
1992
).
27.
J. M. P. Q.
Delgado
, “
A critical review of dispersion in packed beds
,”
Heat Mass Transfer
42
(
4
),
279
(
2006
).
28.
J. M. P. Q.
Delgado
, “
Longitudinal and transverse dispersion in porous media
,”
Chem. Eng. Res. Des.
85
(
9A
),
1245
(
2007
).
29.
P. V.
Danckwerts
, “
Continuous flow systems. Distribution of residence times
,”
Chem. Eng. Sci.
2
(
1
),
1–13
(
1953
).
30.
D. B.
Spalding
, “
A note on mean residence-times in steady flows of arbitrary complexity
,”
Chem. Eng. Sci.
9
(
1
),
74
(
1958
).
31.
M.
Sandberg
, “
What is ventilation efficiency?
,”
Build. Environ.
16
(
2
),
123
(
1981
).
32.
G. I.
Taylor
, “
Dispersion of soluble matter in solvent flowing slowly through a tube
,”
Proc. R. Soc. London, Ser. A
219
(
1137
),
186
203
(
1953
).
33.
G. I.
Taylor
, “
The dispersion of matter in turbulent flow through a pipe
,”
Proc. R. Soc. London, Ser. A
223
(
1155
),
446
468
(
1954
).
34.
G. I.
Taylor
, “
Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion
,”
Proc. R. Soc. London, Ser. A
225
(
1163
),
473
477
(
1954
).
35.
R.
Aris
, “
On the dispersion of a solute in a fluid flowing through a tube
,”
Proc. R. Soc. London, Ser. A
235
,
67
77
(
1956
).
36.
R.
Aris
, “
On the dispersion of a solute by diffusion, convection and exchange between phases
,”
Proc. R. Soc. London, Ser. A
252
,
538
550
(
1959
).
37.
H.
Brenner
, “
Dispersion resulting from flow through spatially periodic porous media
,”
Philos. Trans. R. Soc. London, Ser. A
297
(
1430
),
81
133
(
1980
).
38.
H.
Brenner
and
P. M.
Adler
, “
Dispersion resulting from flow through spatically periodic porous media. II. Surface and intraparticle transport
,”
Philos. Trans. R. Soc. London, Ser. A
307
,
149
200
(
1982
).
39.
M.
Liu
and
J. N.
Tilton
, “
Spatial distributions of mean age and higher moments in steady continuous flows
,”
AIChE J.
56
(
10
),
2561
(
2010
).
40.
A. E.
Rodrigues
, “
Residence time distribution (RTD) revisited
,”
Chem. Eng. Sci.
230
,
116188
(
2021
).
41.
S.
Ovaysi
and
M.
Piri
, “
Pore-scale modeling of dispersion in disordered porous media
,”
J. Contam. Hydrol.
124
(
1–4
),
68
(
2011
).
42.
R.
Simpkin
, “
Derivation of Lichtenecker's logarithmic mixture formula from Maxwell's equations
,”
IEEE Trans. Microwave Theory Tech.
58
(
3
),
545–550
(
2010
).
43.
F.
Parmentier
, “
Effect of diffusional bridging in multicapillary packing
,”
C. R. Chim.
23
(
6–7
),
415
(
2020
).
44.
B.
Huygens
,
F.
Parmentier
, and
G.
Desmet
, “
Exact analytical expressions for the band broadening in polydisperse 2-D multi-capillary columns with diffusional bridging
,”
J. Chromatogr. A
1659
,
462632
(
2021
).
45.
B.
Huygens
,
F.
Parmentier
, and
G.
Desmet
, “
Transient Taylor-Aris dispersion in N-capillary systems: Convergence properties of the band broadening in polydisperse multi-capillary columns with diffusional bridging
,”
J. Chromatogr. A
1678
,
463346
(
2022
).
46.
F.
Gritti
,
D.
Hlushkou
, and
U.
Tallarek
, “
Multiple-open-tubular column enabling transverse diffusion. I. Band broadening model for accurate mass transfer predictions
,”
J. Chromatogr. A
1625
,
461325
(
2020
).
47.
F.
Gritti
,
D.
Hlushkou
, and
U.
Tallarek
, “
Multiple-open-tubular column enabling transverse diffusion. II. Channel size distribution and structure optimization
,”
J. Chromatogr. A
1642
,
462033
(
2021
).
48.
F.
Gritti
,
D.
Hlushkou
, and
U.
Tallarek
, “
Multiple-open-tubular column enabling transverse diffusion. III. Simulation of solute dispersion along a real three dimensional-printed column with quadratic channels
,”
J. Chromatogr. A
1693
,
463860
(
2023
).
49.
B.
Vankeerberghen
,
F.
Parmentier
, and
G.
Desmet
, “
Microfluidic validation of the diffusional bridging effect suppressing dispersion in multicapillary flow systems
,”
Anal. Chem.
95
(
24
),
9330
(
2023
).
50.
G.
Desmet
, “
A finite parallel zone model to interpret and extend Giddings' coupling theory for the eddy-dispersion in porous chromatographic media
,”
J. Chromatogr. A
1314
,
124
(
2013
).
51.
A.
Puyguiraud
,
P.
Gouze
, and
M.
Dentz
, “
Pore-scale mixing and the evolution of hydrodynamic dispersion in porous media
,”
Phys. Rev. Lett.
126
(
16
),
164501
(
2021
).
52.
H.-O.
Pfannkuch
, “
Contribution à l'étude des déplacements de fluides miscibles dans un milieu poreux
,”
Rev. Inst. Fr. Pétrol
18
,
215
270
(
1963
).
53.
S.
Whitaker
,
The Method of Volume Averaging
(Springer,
1999
).
54.
B.
Bijeljic
and
M. J.
Blunt
, “
Pore-scale modeling and continuous time random walk analysis of dispersion in porous media
,”
Water Resour. Res.
42
(
1
),
W01202
, https://doi.org/10.1029/2005WR004578 (
2006
).

Supplementary Material

You do not currently have access to this content.