An efficient second-order cell-centered Lagrangian discontinuous Galerkin (DG) method for solving two-dimensional (2D) elastic-plastic flows with the hypo-elastic constitutive model and von Mises yield condition is presented. First, starting from the governing equations of conserved quantities in the Euler framework, the integral weak formulation of them in the Lagrangian framework is derived. Next, the DG method is used for spatial discretization of both the weak formulation of conserved quantities and the evolution equation of deviatoric stress tensor. The Taylor basis functions defined in the reference coordinates provide the piecewise polynomial expansion of the variables, including the conserved quantities and the deviatoric stress tensor. The vertex velocities and Cauchy stress tensor on the edges are computed using a nodal solver equipped with a variant of Li's new Harten-Lax-van Leer-contact approximate Riemann solver [Li et al., “An HLLC-type approximate Riemann solver for two-dimensional elastic-perfectly plastic model,” J. Comput. Phys. 448, 110675 (2022)], in which the longitudinal wave velocity in the plastic state is modified. Then the vertex velocities and Cauchy stress tensor on the edges are used to compute numerical fluxes. A second-order total variation diminishing Runge–Kutta scheme is used for time discretization of both the governing equations of conserved quantities and the evolution equation of deviatoric stress tensor. After solving the evolution equation of deviatoric stress tensor, a radial return algorithm is performed at the Gauss points of each element according to the von Mises yield condition. And then the coefficients of the DG expansion for the deviatoric stress tensor on each element are modified by a least squares procedure using the deviatoric stress tensors at these Gauss points. To achieve second-order accuracy, the least squares procedure is used for piecewise linear reconstruction of conserved quantities and the deviatoric stress tensor, and the Barth–Jespersen limiter is used to suppress the nonphysical numerical oscillation near the discontinuities. After that, the coefficients of the DG expansion are modified through L2 projection using the reconstructed polynomials. Finally, a second-order cell-centered Lagrangian DG scheme is established. Several tests demonstrate that the new scheme achieves second-order accuracy with good robustness, and that the DG method of updating the deviatoric stress tensor has comparable accuracy and much higher efficiency with mesh refinement compared with previous works.

1.
D. E.
Burton
,
T. C.
Carney
,
N. R.
Morgan
,
S. K.
Sambasivan
, and
M. J.
Shashkov
, “
A cell-centered Lagrangian Godunov-like method for solid dynamics
,”
Comput. Fluids
83
,
33
47
(
2013
).
2.
G.
Kluth
and
B.
Després
, “
Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme
,”
J. Comput. Phys.
229
(
24
),
9092
9118
(
2010
).
3.
P.-H.
Maire
,
R.
Abgrall
,
J.
Breil
,
R.
Loubère
, and
B.
Rebourcet
, “
A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids
,”
J. Comput. Phys.
235
(
2
),
626
665
(
2013
).
4.
J.
Cheng
,
W.
Huang
,
S.
Jiang
, and
B.
Tian
, “
A third-order moving mesh cell-centered scheme for one-dimensional elastic-plastic flows
,”
J. Comput. Phys.
349
,
137
153
(
2017
).
5.
J. A.
Trangenstein
and
P.
Colella
, “
A higher-order Godunov method for modeling finite deformation in elastic-plastic solids
,”
Commun. Pure Appl. Math.
44
(
1
),
41
100
(
1991
).
6.
G. H.
Miller
and
P.
Colella
, “
A high-order Eulerian Godunov method for elastic-plastic flow in solids
,”
J. Comput. Phys.
167
(
1
),
131
176
(
2001
).
7.
P. T.
Barton
,
D.
Drikakis
,
E.
Romenski
, and
V. A.
Titarev
, “
Exact and approximate solutions of Riemann problems in non-linear elasticity
,”
J. Comput. Phys.
228
(
18
),
7046
7068
(
2009
).
8.
T.
Liu
,
W.
Xie
, and
B. C.
Khoo
, “
The modified ghost fluid method for coupling of fluid and structure constituted with hydro-elasto-plastic equation of state
,”
SIAM J. Sci. Comput.
30
(
3
),
1105
1130
(
2008
).
9.
N. S.
Ghaisas
,
A.
Subramaniam
, and
S. K.
Lele
, “
A unified high-order Eulerian method for continuum simulations of fluid flow and of elastic-plastic deformations in solids
,”
J. Comput. Phys.
371
,
452
482
(
2018
).
10.
S. K.
Sambasivan
,
M. J.
Shashkov
, and
D. E.
Burton
, “
A cell-centered Lagrangian finite volume approach for computing elasto-plastic response of solids in cylindrical axisymmetric geometries
,”
J. Comput. Phys.
237
(
1
),
251
288
(
2013
).
11.
J.
Cheng
,
E. F.
Toro
,
S.
Jiang
,
M.
Yu
, and
W.
Tang
, “
A high-order cell-centered Lagrangian scheme for one-dimensional elastic-plastic problems
,”
Comput. Fluids
122
,
136
152
(
2015
).
12.
J.
Cheng
,
Y.
Jia
,
S.
Jiang
,
E. F.
Toro
, and
M.
Yu
, “
A second-order cell-centered Lagrangian method for two-dimensional elastic-plastic flows
,”
Commun. Comput. Phys.
22
(
5
),
1224
1257
(
2017
).
13.
J.
Cheng
,
L.
Liu
,
S.
Jiang
,
M.
Yu
, and
Z.
Liu
, “
A second-order cell-centered Lagrangian scheme with a HLLC Riemann solver of elastic and plastic waves for two-dimensional elastic-plastic flows
,”
J. Comput. Phys.
413
,
109452
(
2020
).
14.
X.
Li
,
J.
Zhai
, and
Z.
Shen
, “
An HLLC-type approximate Riemann solver for two-dimensional elastic-perfectly plastic model
,”
J. Comput. Phys.
448
,
110675
(
2022
).
15.
S.-C.
Soon
,
B.
Cockburn
, and
H. K.
Stolarski
, “
A hybridizable discontinuous Galerkin method for linear elasticity
,”
Int. J. Numer. Methods Eng.
80
(
8
),
1058
1092
(
2009
).
16.
Y.
Shen
and
A. J.
Lew
, “
A locking-free and optimally convergent discontinuous-Galerkin-based extended finite element method for cracked nearly incompressible solids
,”
Comput. Methods Appl. Mech. Eng.
273
,
119
142
(
2014
).
17.
H.
Kabaria
,
A. J.
Lew
, and
B.
Cockburn
, “
A hybridizable discontinuous Galerkin formulation for non-linear elasticity
,”
Comput. Methods Appl. Mech. Eng.
283
,
303
329
(
2015
).
18.
E. J.
Lieberman
,
X.
Liu
,
N. R.
Morgan
,
D. J.
Luscher
, and
D. E.
Burton
, “
A higher-order Lagrangian discontinuous Galerkin hydrodynamic method for solid dynamics
,”
Comput. Methods Appl. Mech. Eng.
353
,
467
490
(
2019
).
19.
E. J.
Lieberman
,
N. R.
Morgan
,
D. J.
Luscher
, and
D. E.
Burton
, “
A higher-order Lagrangian discontinuous Galerkin hydrodynamic method for elastic-plastic flows
,”
Comput. Math. Appl.
78
(
2
),
318
334
(
2019
).
20.
S.-C.
Soon
, “
Hybridizable discontinuous Galerkin methods for solid mechanics
,”
PhD thesis
(
University of Minnesota
,
2008
).
21.
X.
Liu
,
N. R.
Morgan
,
E. J.
Lieberman
, and
D. E.
Burton
, “
A fourth-order Lagrangian discontinuous Galerkin method using a hierarchical orthogonal basis on curvilinear grids
,”
J. Comput. Appl. Math.
404
,
113890
(
2022
).
22.
S. L.
Gavrilyuk
,
N.
Favrie
, and
R.
Saurel
, “
Modelling wave dynamics of compressible elastic materials
,”
J. Comput. Phys.
227
(
5
),
2941
2969
(
2008
).
23.
T.
Liu
,
A. W.
Chowdhury
, and
B. C.
Khoo
, “
The modified ghost fluid method applied to fluid-elastic structure interaction
,”
Adv. Appl. Math. Mech.
3
(
5
),
611
632
(
2011
).
24.
I. S.
Menshov
,
A. V.
Mischenko
, and
A. A.
Serejkin
, “
Numerical modeling of elastoplastic flows by the Godunov method on moving Eulerian grids
,”
Math. Models Comput. Simul.
6
(
2
),
127
141
(
2014
).
25.
S.
Gao
and
T.
Liu
, “
1D exact elastic-perfectly plastic solid Riemann solver and its multi-material application
,”
Adv. Appl. Math. Mech.
9
(
3
),
621
650
(
2017
).
26.
S.
Gao
,
T.
Liu
, and
C.
Yao
, “
A complete list of exact solutions for one-dimensional elastic-perfectly plastic solid Riemann problem without vacuum
,”
Commun. Nonlinear Sci. Numer. Simul.
63
,
205
227
(
2018
).
27.
J.
Cheng
, “
Harten-Lax-van Leer-contact (HLLC) approximation Riemann solver with elastic waves for one-dimensional elastic-plastic problems
,”
Appl. Math. Mech-Engl. Ed.
37
(
11
),
1517
1538
(
2016
).
28.
L.
Liu
,
J.
Cheng
, and
Z.
Liu
, “
A multi-material HLLC Riemann solver with both elastic and plastic waves for 1D elastic-plastic flows
,”
Comput. Fluids
192
,
104265
(
2019
).
29.
Q.
Chen
,
L.
Li
,
J.
Qi
,
Z.
Zeng
,
B.
Tian
, and
T.
Liu
, “
A cell-centered Lagrangian scheme with an elastic-perfectly plastic solid Riemann solver for wave propagations in solids
,”
Adv. Appl. Math. Mech.
14
(
3
),
703
724
(
2022
).
30.
X.
Li
,
J.
Zhai
, and
Z.
Shen
, “
The complete exact Riemann solution for one-dimensional elastic-perfectly plastic Riemann problem
,”
Comput. Methods Appl. Mech. Eng.
390
,
114346
(
2022
).
31.
F.
Qing
,
X.
Yu
,
Z.
Jia
, and
Z.
Li
, “
A cell-centered Lagrangian discontinuous Galerkin method using WENO and HWENO limiter for compressible Euler equations in two dimensions
,”
Comput. Appl. Math.
40
,
212
(
2021
).
32.
Z.
Jia
and
S.
Zhang
, “
A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two-dimensions
,”
J. Comput. Phys.
230
(
7
),
2496
2522
(
2011
).
33.
E.
Grüneisen
, “
Theorie des festen zustandes einatomiger elemente
,”
Ann. Phys.
344
(
12
),
257
306
(
1912
).
34.
T.
Wu
,
M.
Shashkov
,
N. R.
Morgan
,
D.
Kuzmin
, and
H.
Luo
, “
An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics
,”
Comput. Math. Appl.
78
(
2
),
258
273
(
2019
).
35.
P.-H.
Maire
,
R.
Abgrall
,
J.
Breil
, and
J.
Ovadia
, “
A cell-centered Lagrangian scheme for two-dimensional compressible flow problems
,”
SIAM J. Sci. Comput.
29
(
4
),
1781
1824
(
2007
).
36.
P.-H.
Maire
, “
A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids
,”
Comput. Fluids
46
(
1
),
341
347
(
2011
).
37.
N. R.
Morgan
,
K.
Lipnikov
,
D. E.
Burton
, and
M.
Kenamond
, “
A Lagrangian staggered grid Godunov-like approach for hydrodynamics
,”
J. Comput. Phys.
259
,
568
597
(
2014
).
38.
F.
Vilar
, “
Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics
,”
Comput. Fluids
64
,
64
73
(
2012
).
39.
N. R.
Morgan
,
J. I.
Waltz
,
D. E.
Burton
,
M. R.
Charest
,
T. R.
Canfield
, and
J. G.
Wohlbier
, “
A Godunov-like point-centered essentially Lagrangian hydrodynamic approach
,”
J. Comput. Phys.
281
,
614
652
(
2015
).
40.
X.
Liu
,
N. R.
Morgan
, and
D. E.
Burton
, “
A Lagrangian discontinuous Galerkin hydrodynamic method
,”
Comput. Fluids
163
,
68
85
(
2018
).
41.
I.
Peshkov
,
W.
Boscheri
,
R.
Loubère
,
E.
Romenski
, and
M.
Dumbser
, “
Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity
,”
J. Comput. Phys.
387
,
481
521
(
2019
).
42.
H. S.
Udaykumar
,
L.
Tran
,
D. M.
Belk
, and
K. J.
Vanden
, “
An Eulerian method for computation of multimaterial impact with ENO shock-capturing and sharp interfaces
,”
J. Comput. Phys.
186
(
1
),
136
177
(
2003
).
43.
M. L.
Wilkins
, “
Methods in computational physics
,” in
Calculation of Elastic-Plastic Flow
(
Academic Press
,
1964
), Vol.
3
, pp.
211
263
.
44.
B. P.
Howell
and
G. J.
Ball
, “
A free-Lagrange augmented Godunov method for the simulation of elastic-plastic solids
,”
J. Comput. Phys.
175
(
1
),
128
167
(
2002
).
45.
B.
Despres
, “
A geometrical approach to nonconservative shocks and elastoplastic shocks
,”
Arch. Ration. Mech. Anal.
186
(
09
),
275
308
(
2007
).
You do not currently have access to this content.