This paper addresses the simulation of internal high-speed turbulent compressible flows using lattice Boltzmann method (LBM) when it is coupled with the immersed boundary method for non-body-fitted meshes. The focus is made here on the mass leakage issue. The recent LBM pressure-based algorithm [Farag et al. Phys. Fluids 32, 066106 (2020)] has shown its superiority on classical density-based algorithm to simulate high-speed compressible flows. Following our previous theoretical work on incompressible flows [Xu et al. Phys. Fluids 34, 065113 (2022)], we propose an averaged mass correction technique to mitigate mass leakage when simulating high-Mach-number compressible flows. It is adapted to deal here with a density, which is decoupled from the zero-moment definition. The simulations focus on two generic but canonical configurations of more complex industrial devices, the straight channel at different angles of inclination at Mach numbers ( M a) ranging from 0.2 to 0.8, and the National Aeronautics and Space Administration Glenn S-duct at Ma = 0.6. The present results show that mass leakage can be a critical issue for the accuracy of the solution and that the proposed correction technique effectively mitigates it and leads to significant improvements in the prediction of the solution.

1.
A.
Eshghinejadfard
,
L.
Daróczy
,
G.
Janiga
, and
D.
Thévenin
, “
Calculation of the permeability in porous media using the lattice Boltzmann method
,”
Int. J. Heat Fluid Flow
62
,
93
103
(
2016
).
2.
M. A.
Spaid
and
F. R.
Phelan
, Jr.
, “
Lattice Boltzmann methods for modeling microscale flow in fibrous porous media
,”
Phys. Fluids
9
,
2468
2474
(
1997
).
3.
J.
Ma
,
Q.
Huang
,
Y.
Zhu
,
Y.-Q.
Xu
, and
F.-B.
Tian
, “
Effects of fluid rheology on dynamics of a capsule through a microchannel constriction
,”
Phys. Fluids
35
,
091901
(
2023
).
4.
Z.
Guo
and
T.
Zhao
, “
Lattice Boltzmann model for incompressible flows through porous media
,”
Phys. Rev. E
66
,
036304
(
2002
).
5.
Q.
Huang
,
F.-B.
Tian
,
J.
Young
, and
J. C.
Lai
, “
Transition to chaos in a two-sided collapsible channel flow
,”
J. Fluid Mech.
926
,
A15
(
2021
).
6.
L.
Xu
,
F.-B.
Tian
,
J.
Young
, and
J. C.
Lai
, “
A novel geometry-adaptive cartesian grid based immersed boundary–lattice Boltzmann method for fluid–structure interactions at moderate and high reynolds numbers
,”
J. Comput. Phys.
375
,
22
56
(
2018
).
7.
S.
Wilhelm
,
J.
Jacob
, and
P.
Sagaut
, “
An explicit power-law-based wall model for lattice Boltzmann method–reynolds-averaged numerical simulations of the flow around airfoils
,”
Phys. Fluids
30
,
065111
(
2018
).
8.
S.-G.
Cai
,
J.
Degrigny
,
J.-F.
Boussuge
, and
P.
Sagaut
, “
Coupling of turbulence wall models and immersed boundaries on cartesian grids
,”
J. Comput. Phys.
429
,
109995
(
2021
).
9.
J.
Ma
,
Z.
Wang
,
J.
Young
,
J. C.
Lai
,
Y.
Sui
, and
F.-B.
Tian
, “
An immersed boundary-lattice Boltzmann method for fluid-structure interaction problems involving viscoelastic fluids and complex geometries
,”
J. Comput. Phys.
415
,
109487
(
2020
).
10.
J.
Ma
,
L.
Xu
,
F.-B.
Tian
,
J.
Young
, and
J. C.
Lai
, “
Dynamic characteristics of a deformable capsule in a simple shear flow
,”
Phys. Rev. E
99
,
023101
(
2019
).
11.
Y.
Feng
,
P.
Boivin
,
J.
Jacob
, and
P.
Sagaut
, “
Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows
,”
J. Comput. Phys.
394
,
82
99
(
2019
).
12.
S.
Guo
,
Y.
Feng
,
J.
Jacob
,
F.
Renard
, and
P.
Sagaut
, “
An efficient lattice Boltzmann method for compressible aerodynamics on D3Q19 lattice
,”
J. Comput. Phys.
418
,
109570
(
2020
).
13.
G.
Farag
,
S.
Zhao
,
T.
Coratger
,
P.
Boivin
,
G.
Chiavassa
, and
P.
Sagaut
, “
A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows
,”
Phys. Fluids
32
,
066106
(
2020
).
14.
R.
Mei
,
L.-S.
Luo
, and
W.
Shyy
, “
An accurate curved boundary treatment in the lattice Boltzmann method
,”
J. Comput. Phys.
155
,
307
330
(
1999
).
15.
M.
Bouzidi
,
M.
Firdaouss
, and
P.
Lallemand
, “
Momentum transfer of a Boltzmann-lattice fluid with boundaries
,”
Phys. Fluids
13
,
3452
3459
(
2001
).
16.
Z.-L.
Guo
,
C.-G.
Zheng
, and
B.-C.
Shi
, “
Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method
,”
Chin. Phys.
11
,
366
(
2002
).
17.
L.
Xu
,
E.
Serre
, and
P.
Sagaut
, “
A theoretical analysis of mass leakage at boundaries within the lattice Boltzmann method
,”
Phys. Fluids
34
,
065113
(
2022
).
18.
I.
Ginzbourg
and
D.
d'Humières
, “
Local second-order boundary methods for lattice Boltzmann models
,”
J. Stat. Phys.
84
,
927
971
(
1996
).
19.
J.
Bao
,
P.
Yuan
, and
L.
Schaefer
, “
A mass conserving boundary condition for the lattice Boltzmann equation method
,”
J. Comput. Phys.
227
,
8472
8487
(
2008
).
20.
P.-H.
Kao
and
R.-J.
Yang
, “
An investigation into curved and moving boundary treatments in the lattice Boltzmann method
,”
J. Comput. Phys.
227
,
5671
5690
(
2008
).
21.
E.
Le Coupanec
and
J. C.
Verschaeve
, “
A mass conserving boundary condition for the lattice Boltzmann method for tangentially moving walls
,”
Math. Comput. Simul.
81
,
2632
2645
(
2011
).
22.
G.
Wang
,
L.
Xu
,
E.
Serre
, and
P.
Sagaut
, “
Large temperature difference heat dominated flow simulations using a pressure-based lattice Boltzmann method with mass correction
,”
Phys. Fluids
33
,
116107
(
2021
).
23.
T.
Coratger
,
G.
Farag
,
S.
Zhao
,
P.
Boivin
, and
P.
Sagaut
, “
Large-eddy lattice-Boltzmann modeling of transonic flows
,”
Phys. Fluids
33
,
115112
(
2021
).
24.
H.
Yoo
,
M.
Bahlali
,
J.
Favier
, and
P.
Sagaut
, “
A hybrid recursive regularized lattice Boltzmann model with overset grids for rotating geometries
,”
Phys. Fluids
33
,
057113
(
2021
).
25.
N.
Afzal
and
K.
Gersten
, “
Wake layer in a turbulent boundary layer with pressure gradient: A new approach
,”
Fluid Mech. Appl.
37
,
95
118
(
1996
).
26.
A. E.
Honein
and
P.
Moin
, “
Higher entropy conservation and numerical stability of compressible turbulence simulations
,”
J. Comput. Phys.
201
,
531
545
(
2004
).
27.
S.
Hoyas
and
J.
Jiménez
, “
Scaling of the velocity fluctuations in turbulent channels up to Re τ = 2003
,”
Phys. Fluids
18
,
011702
(
2006
).
28.
S.
Wellborn
,
B.
Reichert
, and
T.
Okiishi
, “
An experimental investigation of the flow in a diffusing S-duct
,” in
28th Joint Propulsion Conference and Exhibit
(AIAA,
1992
), p.
3622
.
29.
S. R.
Wellborn
,
B. A.
Reichert
, and
T. H.
Okiishi
, “
Study of the compressible flow in a diffusing S-duct
,”
J. Propul. Power
10
,
668
675
(
1994
).
30.
M. M.
Wojewodka
,
C.
White
,
S.
Shahpar
, and
K.
Kontis
, “
Numerical study of complex flow physics and coherent structures of the flow through a convoluted duct
,”
Aerosp. Sci. Technol.
121
,
107191
(
2022
).
31.
X.
Han
,
T. J.
Wray
,
C.
Fiola
, and
R. K.
Agarwal
, “
Computation of flow in S-ducts with Wray–Agarwal one-equation turbulence model
,”
J. Propul. Power
31
,
1338
1349
(
2015
).
32.
J.
Jacob
,
O.
Malaspinas
, and
P.
Sagaut
, “
A new hybrid recursive regularised Bhatnagar–Gross–Krook collision model for lattice Boltzmann method-based large eddy simulation
,”
J. Turbul.
19
,
1051
1076
(
2018
).
33.
M.
Skote
and
D. S.
Henningson
, “
Direct numerical simulation of a separated turbulent boundary layer
,”
J. Fluid Mech.
471
,
107
136
(
2002
).
You do not currently have access to this content.