The boundary layer transition on a compound delta wing for Mach 6 has been studied experimentally and numerically. The experiment was performed at Peking University quiet wind tunnel using the Rayleigh scattering flow visualization and infrared thermography. Direct numerical simulations, under the same flow conditions, are applied to analyze the transition mechanism. The results show that the traveling cross flow vortices first appear near the leading edge of compound delta wing. These vortices modulate the mean profile of the flow due to which a rope-like structure appear in the streamwise direction, which is typical of Mack's second-mode. As Mack's second-mode grows to a sufficiently large amplitude, it triggers secondary instability, which behaves as secondary finger like structures. At the end of the transition process, low-frequency waves are excited by Mack's second-mode through an interaction mechanism with their phase speed approaching each other. It is also found that increasing the unit Reynolds number greatly promotes the aerodynamic heating as well as local hot streaks appear on both sides of the compound delta wing in the streamwise direction. The appearance of hot streaks on the compound delta wing is strongly correlated with Mack's second-mode.

1.
E.
Reshotko
, “
Transition issues for atmospheric entry
,”
J. Spacecr. Rockets
45
,
161
164
(
2008
).
2.
S. P.
Schneider
, “
Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies
,”
Prog. Aerosp. Sci.
40
,
1
50
(
2004
).
3.
M.
Lee
and
C.-M.
Ho
, “
Lift force of delta wings
,”
Appl. Mech. Rev.
43
,
209
221
(
1990
).
4.
I.
Gursul
, “
Recent developments in delta wing aerodynamics
,”
Aeronaut. J.
108
,
437
452
(
2004
).
5.
I.
Gursul
, “
Review of unsteady vortex flows over slender delta wings
,”
J. Aircr.
42
,
299
319
(
2005
).
6.
I.
Gursul
,
R. E.
Gardner
, and
M. R.
Visbal
, “
Unsteady aerodynamics of non slender delta wings
,”
Prog. Aerosp. Sci.
41
,
515
557
(
2005
).
7.
A.
Sinha
,
A. K.
Suthar
,
S.
Sahoo
,
A. A.
Pawar
,
K. S.
Ranjan
, and
S.
Saha
, “
Effect of sweep angle on wing-strake vortex – interaction and breakdown over double delta wings
,” in
First International Conference on Recent Advances in Aerospace Engineering (ICRAAE)
(
IEEE
,
2017
), pp.
1
6
.
8.
P.
Earnshaw
and
J. A.
Lawford
, “
Double delta wing to study the behaviour of primary vortices on aerodynamic characteristics
,” https://api.semanticscholar.org/CorpusID:189801735 (
2018
).
9.
C.-H.
Hsu
,
P.-M.
Hartwich
, and
C. H.
Liu
, “
Computation of vortical interaction for a sharp-edged double-delta wing
,”
J. Aircr.
25
,
442
447
(
1988
).
10.
V. G.
Nair
,
M.
Dileep
, and
K. R.
Prahlad
, “
A study on recent trends in high subsonic flow over delta wings
,”
Int. J. Eng. Res. Appl.
4
,
122
127
(
2014
).
11.
X.
Dong
et al, “
Quantitative experimental research on vortex generation and self-maintenance mechanisms in turbulence
,”
Phys. Fluids
35
,
055118
(
2023
).
12.
K.
Fukagata
,
K.
Iwamoto
, and
N.
Kasagi
, “
Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows
,”
Phys. Fluids
14
,
L73
(
2002
).
13.
W.
Li
,
Y.
Fan
,
D.
Modesti
, and
C.
Cheng
, “
Decomposition of the mean skin-friction drag in compressible turbulent channel flows
,”
J. Fluid Mech.
875
,
101
123
(
2019
).
14.
A.
Fedorov
, “
Transition and stability of high-speed boundary layers
,”
Annu. Rev. Fluid Mech.
43
,
79
95
(
2011
).
15.
Y.
Wang
,
J.
Xu
,
L.
Qiao
,
Y.
Zhang
, and
J.
Bai
, “
Improved amplification factor transport transition model for transonic boundary layers
,” AIAA Paper No. 2022-4030,
2022
.
16.
X.
Bai
,
Y.
He
, and
M.
Xu
, “
Low-thrust reconfiguration strategy and optimization for formation flying using Jordan normal form
,”
IEEE Trans. Aerosp. Electron. Syst.
57
,
3279
3295
(
2021
).
17.
O.
Uyanna
and
H.
Najafi
, “
Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects
,”
Acta Astronaut.
176
,
341
356
(
2020
).
18.
Y.
Shi
,
C.
Song
,
Y.
Chen
,
H.
Rao
, and
T.
Yang
, “
Complex standard eigenvalue problem derivative computation for laminar–turbulent transition prediction
,”
AIAA J.
61
,
3404
(
2023
).
19.
M. V.
Morkovin
, “
Critical evaluation of transition from laminar to turbulent shear layers with emphasis on hypersonically traveling bodies
,” Technical Report No. AFFDL-TR-68-149, Air Force Flight Dynamics Laboratory (
1969
).
20.
F.
Miró Miró
and
F.
Pinna
, “
Decoupling ablation effects on boundary-layer stability and transition
,”
J. Fluid Mech.
907
,
A14
(
2021
).
21.
C.
Lee
and
J. Z.
Wu
, “
Transition in wall-bounded flows
,”
Appl. Mech. Rev.
61
,
030802
(
2008
).
22.
P. A.
Durbin
, “
Some recent developments in turbulence closure modeling
,”
Annu. Rev. Fluid Mech.
50
,
77
103
(
2019
).
23.
S.
Yao
,
Y.
Duan
,
C.
Tian
,
S.
Li
,
P.
Yang
, and
H. S.
Duan
, “
Instability and transition of hypersonic boundary layer on a blunted delta wing
,”
J. Spacecr. Rockets
60
,
38
(
2023
).
24.
R. W.
Dunning
and
E. F.
Ulmann
, “
Effects of sweep and angle of attack on boundary-layer transition on wings at Mach number 4.04
,” NACA Technical Note No. 3473, 1955.
25.
Y.
Shi
,
Q.
Lan
,
X.
Lan
,
J.
Wu
,
T.
Yang
, and
B.
Wang
, “
Robust optimization design of a flying wing using adjoint and uncertainty-based aerodynamic optimization approach
,”
Struct. Multidiscip. Optim.
66
,
110
(
2023
).
26.
C.
Lee
and
S.
Chen
, “
Recent progress in the study of transition in the hypersonic boundary layer
,”
Natl. Sci. Rev.
6
,
155
170
(
2019
).
27.
L.
Duan
,
M.
Choudhari
, and
F.
Li
, “
Direct numerical simulation of transition in a swept-wing boundary layer
,” in
43rd Fluid Dynamics Conference, San Diego, CA, 24–27 June 2013
(
AIAA
,
2013
), AIAA Paper No. 2013–2617.
28.
J.
Li
,
X.
Zhao
, and
M.
Graham
, “
Vortex force maps for three-dimensional unsteady flows with application to a delta wing
,”
J. Fluid Mech.
900
,
A36
(
2020
).
29.
X.
Bai
,
M.
Xu
,
Q.
Li
, and
L.
Yu
, “
Trajectory-battery integrated design and its application to orbital maneuvers with electric pump-fed engines
,”
Adv. Space Res.
70
,
825
(
2022
).
30.
S.
Yao
,
D.
Yi
,
Y.
Pan
,
L.
Wang
,
X. P.
Zhao
, and
C.
Min
, “
Experimental study of hypersonic boundary layer transition on a flat plate delta wing
,”
Exp. Therm. Fluid Sci.
112
,
109990
(
2020
).
31.
H.
Niu
,
S.
Yi
,
X.
Liu
,
X.
Lu
, and
D.
Gang
, “
Experimental investigation of boundary layer transition over a delta wing at Mach number 6
,”
Chin. J. Aeronaut.
33
,
1889
1902
(
2020
).
32.
A.
Vaganov
,
D. V.
Grachikov
,
V. M.
Kashin
,
V. N.
Nemykin
,
A. Y.
Noev
,
V. N.
Radchenko
,
A. S.
Skuratov
, and
V.
Shalaev
, “
Laminar-turbulent transition in the vicinity of blunt leading edge of flat delta wing in hypersonic flow
,”
AIP Conf. Proc.
1893
,
030070
(
2017
).
33.
Y.
Zhu
,
C.
Lee
,
X.
Chen
,
J.
Wu
,
S.
Chen
, and
M. G.
el Hak
, “
Newly identified principle for aerodynamic heating in hypersonic flows
,”
J. Fluid Mech.
855
,
152
180
(
2018
).
34.
M. B.
Huntley
and
A. J.
Smits
, “
Transition studies on elliptic cones in Mach 8 flow using filtered Rayleigh scattering
,” in
Proceeding of First Symposium on Turbulence and Shear Flow Phenomena
(
2000
).
35.
C.
Zhang
and
C.
Lee
, “
Rayleigh-scattering visualization of the development of second-mode waves
,”
J. Visualization
20
,
7
12
(
2017
).
36.
A. J.
Saltzman
,
S. J.
Beresh
,
K. M.
Casper
,
B.
Denk
,
R.
Bhakta
,
M. D.
Zetter
, and
R. W.
Spillers
, “
Carbon dioxide seeding system for enhanced Rayleigh scattering in Sandia's hypersonic wind tunnel
,” AIAA Paper No. 2022-4131,
2022
.
37.
K.
Asai
,
H.
Kanda
,
T.
Kunimasu
,
T.
Liu
, and
J. P.
Sullivan
, “
Boundary-layer transition detection in a cryogenic wind tunnel using luminescent paint
,”
J. Aircr.
34
,
34
42
(
1997
).
38.
T. J.
Juliano
,
L. A.
Paquin
, and
M. P.
Borg
, “
Hifire-5 boundary-layer transition measured in a Mach-6 quiet tunnel with infrared thermography
,”
AIAA J.
57
,
2001
(
2019
).
39.
C.
Zhang
,
Q.
Tang
, and
C.
Lee
, “
Hypersonic boundary-layer transition on a flared cone
,”
Acta Mech. Sin.
29
,
48
54
(
2013
).
40.
W.
Si
,
G.
Huang
,
Y.
Zhu
,
S.
Chen
, and
C.
Lee
, “
Hypersonic aerodynamic heating over a flared cone with wavy wall
,”
Phys. Fluids
31
,
051702
(
2019
).
41.
J.
Yu
,
W.
Chen
,
X.
Huang
,
Y.
Zhu
, and
C.
Lee
, “
An effective control strategy for transitional hypersonic boundary layers
,”
Phys. Fluids
35
,
091702
(
2023
).
42.
W.
Zhu
,
M.
Shi
,
Y.
Zhu
, and
C.
Lee
, “
Experimental study of hypersonic boundary layer transition on a permeable wall of a flared cone
,”
Phys. Fluids
32
,
011701
(
2020
).
43.
N. G.
Verhaagen
,
L. N.
Jenkins
, and
S.
Kern
, “
A study of the vortex flow over 76/40-deg double-delta wing
,” in
33rd Aerospace Sciences Meeting and Exhibit, Reno, NV, 9-12 January 1995
(
AIAA
,
1995
), AIAA Paper No. 1995–0650.
44.
K. K.
Jaiswal
,
P. P.
Ganorkar
, and
S. K.
Shinde
, “
Edge blending to enhance the flow over double delta wing configuration during re-entry
,”
IOP Conf. Ser.
1272
,
012018
(
2022
).
45.
J. J. S.
Shang
and
H.
Yan
, “
High-enthalpy hypersonic flows
,”
Adv. Aerodyn.
2
,
19
(
2020
).
46.
C.
Zhang
,
Y.
Zhu
,
X.
Chen
,
H.
Yuan
,
J.
Wu
,
S.
Chen
,
C.
Lee
, and
M. G.
el Hak
, “
Transition in hypersonic boundary layers
,”
AIP Adv.
5
,
107137
(
2015
).
47.
M. W.
Smith
and
A. J.
Smits
, “
Visualization of the structure of supersonic turbulent boundary layers
,”
Exp. Fluids
18
,
288
302
(
1995
).
48.
X.
Zhong
and
X.
Wang
, “
Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers
,”
Annu. Rev. Fluid Mech.
44
,
527
561
(
2012
).
49.
P.
Wassermann
and
M. J.
Kloker
, “
Transition mechanisms induced by travelling crossflow vortices in a three-dimensional boundary layer
,”
J. Fluid Mech.
483
,
67
89
(
2003
).
50.
X.
Chen
,
Y.
Zhu
, and
C.
Lee
, “
Interactions between second mode and low-frequency waves in a hypersonic boundary layer
,”
J. Fluid Mech.
820
,
693
735
(
2017
).
51.
D. A.
Bountin
,
A. N.
Shiplyuk
, and
A. A.
Sidorenko
, “
Experimental investigations of disturbance development in the hypersonic boundary layer on a conical model
,” in Laminar-Turbulent Transition: IUTAM Symposium, Sedona, AZ, 13-17 September 1999 (Springer, Berlin/Heidelberg, 2000), pp. 475–480.
52.
X.
Li
,
D.
Fu
, and
Y.
Ma
, “
Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack
,”
Phys. Fluids
22
,
025105
(
2010
).
53.
Y.
Zhu
et al, “
Transition in hypersonic boundary layers: Role of dilatational waves
,”
AIAA J.
54
,
3039
3049
(
2016
).
54.
Y.
Zhu
,
W.
Zhu
,
D.
Gu
,
C.
Lee
, and
C. R.
Smith
, “
Characteristics of transition to turbulence over a Mach 6 flared cone
,”
Phys. Fluids
33
,
101708
(
2021
).
55.
L.
Lees
, “
The stability of the laminar boundary layer in a compressible fluid
,” NACA Technical Report No. 876,
1947
.
You do not currently have access to this content.