A long-standing question in the Reynolds-averaged modeling of turbulent flow is how to predict accurately flows with temporal or spatial unsteadiness. In this paper, we present a “return to equilibrium” approach to modeling the unsteady Reynolds stress anisotropy bij in terms of differential transport equations, the solutions to which are constrained by algebraic closures for bij in flows at equilibrium and by the corresponding rapid-distortion-theory solutions for flows far from equilibrium. When coupled with scale equations for the turbulent kinetic energy and the dissipation rate, these anisotropy evolution equations comprise a complete closure scheme for which no additional model coefficients are required. Evaluations of this closure scheme, in which two different existing equilibrium algebraic models for bij were employed, were carried out for homogeneous turbulence in flows with a step imposition of shear, with continuously oscillatory shear at different frequencies and with a prescribed time-dependent plane-strain rate. Good agreement was achieved between model predictions and experimental/simulation target data in all test cases, with either Girimaji's bij model or a structure-based bij model used as the equilibrium algebraic closure.

1.
W.
Rodi
, “
A new algebraic relation for calculating the Reynolds stress
,”
Z. Angew. Math. Mech.
56
,
T219
(
1976
).
2.
S. S.
Girimaji
, “
Fully explicit and self-consistent algebraic Reynolds stress model
,”
Theor. Comput. Fluid Dyn.
8
,
387
(
1996
).
3.
C. G.
Speziale
, “
Analytical methods for the development of Reynolds-stress closures in turbulence
,”
Annu. Rev. Fluid Mech.
23
,
107
(
1991
).
4.
T. B.
Gatski
, “
Constitutive equations for turbulent flows
,”
Theor. Comput. Fluid Dyn.
18
,
345
(
2004
).
5.
J. L.
Lumley
, “
Toward a turbulent constitutive relation
,”
J. Fluid Mech.
41
,
413
(
1970
).
6.
S. B.
Pope
, “
A more general effective-viscosity hypothesis
,”
J. Fluid Mech.
72
,
331
(
1975
).
7.
T. B.
Gatski
and
C. G.
Speziale
, “
On explicit algebraic stress models for complex turbulent flows
,”
J. Fluid Mech.
254
,
59
(
1993
).
8.
V.
Yakhot
,
S. A.
Orszag
,
S. A.
Thangam
,
T. B.
Gatski
, and
C. G.
Speziale
, “
Development of turbulence models for shear flows by a double expansion technique
,”
Phys. Fluids A
4
(
7
),
1510
(
1992
).
9.
Y. N.
Huang
and
K. R.
Rajagopal
, “
On a generalized nonlinear K-ϵ model for turbulence that models relaxation effects
,”
Theor. Comput. Fluid Dyn.
8
,
275
(
1996
).
10.
C. G.
Speziale
, “
On nonlinear K- and K-ϵ models of turbulence
,”
J. Fluid Mech.
178
,
459
(
1987
).
11.
A.
Yoshizawa
, “
Statistical analysis of the deviation of the Reynolds stress from its eddy-viscosity representation
,”
Phys. Fluids A
27
(
6
),
1377
(
1984
).
12.
D. C.
Wilcox
,
Turbulence Modeling for CFD
(
DCW Industries
,
La Canada, CA
,
1998
).
13.
T.
Ariki
and
M.
Ikeda
, “
Reynolds-stress root modeling based on a statistical theory
,”
Phys. Fluids
35
,
085109
(
2023
).
14.
B. E.
Launder
,
G.
Reece
, and
W.
Rodi
, “
Progress in the development of a Reynolds stress turbulence closure
,”
J. Fluid Mech.
68
,
537
(
1975
).
15.
C. G.
Speziale
,
S.
Sarkar
, and
T. B.
Gatski
, “
Modeling the pressure-strain correlation of turbulence: An invariant dynamical system approach
,”
J. Fluid Mech.
227
,
245
(
1991
).
16.
W. C.
Reynolds
and
S. C.
Kassinos
, “
A one-point model for the evolution of the Reynolds stress and structure tensors in rapidly deformed homogeneous turbulence
,”
Proc. R. Soc. London, Ser. A
451
(1941),
87
(
1995
).
17.
S. C.
Kassinos
,
W. C.
Reynolds
, and
M. M.
Rogers
, “
One-point turbulence structure tensor
,”
J. Fluid Mech.
428
,
213
(
2001
).
18.
S. C.
Kassinos
,
C. A.
Langer
,
S. L.
Haire
, and
W. C.
Reynolds
, “
Structure-based turbulence modeling for wall-bounded flows
,”
Int. J. Heat Fluid Flow
21
,
599
(
2000
).
19.
C. F.
Panagiotou
,
S. C.
Kassinos
, and
B.
Aupoix
, “
The ASBM-SA turbulence closure: Taking advantage of structure-based modeling in current engineering CFD codes
,”
Int. J. Heat Fluid Flow
52
,
111
(
2015
).
20.
A.
Campos
,
K.
Duraisamy
, and
G.
Iaccarino
, “
A segregated explicit algebraic structure-based model for wall-bounded turbulent flows
,”
Int. J. Heat Fluid Flow
61
,
284
(
2016
).
21.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge
,
2000
).
22.
P. E.
Hamlington
and
W. J. A.
Dahm
, “
Reynolds stress closure for nonequilibrium effects in turbulent flows
,”
Phys. Fluids
20
,
115101
(
2008
).
23.
W. C.
Reynolds
, “
Fundamentals of turbulence for turbulence modeling and simulation
,” Lecture Notes for Von Karman Institute,
Agard Report 755
,
1987
.
24.
G. J.
Brereton
and
R. R.
Mankbadi
, “
A rapid-distortion-theory model for developed unsteady wall-bounded flow
,” in
Near-Wall Turbulent Flows
, edited by
R. M. C.
So
,
C. G.
Speziale
, and
B. E.
Launder
(
Elsevier Science Publishers B.V
,
1993
), p.
95
; also NASA Technical Memorandum 106249, 1993.
25.
J. C.
Rotta
, “
Statistische theorie nichthomogener turbulenz
,”
Z. Phys.
129
,
547
(
1951
).
26.
S.
Sarkar
and
C. G.
Speziale
, “
A simple nonlinear model for return to isotropy in turbulence
,”
Phys. Fluids A
2
,
84
(
1990
).
27.
P. A.
Durbin
and
B. A.
Pettersson Reif
,
Statistical Theory and Modeling for Turbulent Flows
(
John Wiley
,
New York
,
2001
).
28.
M. J.
Lee
,
U.
Piomelli
, and
W. C.
Reynolds
, “
Useful formulas in the rapid distortion theory of homogeneous turbulence
,”
Phys. Fluids A
29
(
10
),
3471
(
1986
).
29.
S. C.
Kassinos
and
W. C.
Reynolds
, “
A structure-based model for the rapid distortion of homogeneous turbulence
,”
Stanford University Report No. TF-61
,
1994
.
30.
S. C.
Kassinos
,
C. A.
Langer
,
G.
Kalitzin
, and
G.
Iaccarino
, “
A simplified structure-based model using standard turbulence scale equations: Computation of rotating wall-bounded flows
,”
Int. J. Heat Fluid Flow
27
,
653
(
2006
).
31.
M. M.
Rogers
and
P.
Moin
, “
The structure of the vorticity field in homogeneous turbulent flows
,”
J. Fluid Mech.
176
,
33
(
1987
).
32.
S.
Tavoularis
and
U.
Karnik
, “
Further experiments on the evolution of turbulent stresses and scales in uniformly sheared turbulence
,”
J. Fluid Mech.
204
,
457
(
1989
).
33.
M. J.
Lee
,
J.
Kim
, and
P.
Moin
, “
Structure of turbulence at high shear rate
,”
J. Fluid Mech.
216
,
561
(
1990
).
34.
M. J.
Lee
and
W. C.
Reynolds
, “
Numerical experiments on the structure of homogeneous turbulence
,”
Stanford University Report No. TF-24
,
1985
.
35.
D.
Yu
and
S. S.
Girimaji
, “
Direct numerical simulations of homogeneous turbulence subjected to periodic shear
,”
J. Fluid Mech.
566
,
117
(
2006
).
36.
J.
Chen
,
C.
Meneveau
, and
J.
Katz
, “
Scale interactions of turbulence subjected to a straining-relaxation-destraining cycle
,”
J. Fluid Mech.
562
,
123
(
2006
).
37.
J.
Bardina
,
J. H.
Ferziger
, and
W. C.
Reynolds
, “
Improved turbulence models based on large-eddy simulation of homogeneous, incompressible turbulent flows
,”
Stanford University Report No. TF-19
,
1983
.
You do not currently have access to this content.