Ducted propellers present broad applicability in urban air mobility vehicles due to their enhanced operational safety, improved aerodynamic performance, and potential to mitigate noise emissions. This study proposes a numerical approach for designing adequate duct geometries, focusing on the duct's lip profile, expansion ratio, and tip clearance, aiming to provide valuable design guidance for ducted propellers. The simulations are validated through experimental data, showing reasonable agreement in terms of thrust generation and far-field noise. The mean flow and generated thrust are characterized with a parametric study using steady simulations, while delayed detached eddy simulations are employed to capture transient flow characteristics and investigate noise generation. The noise levels were computed using the integral solution of the Ffowcs-Williams and Hawkings equation. The lip geometry impacts the flow distribution and generated thrust, modifying the tonal noise. Furthermore, slightly divergent ducts can increase the total thrust by minimizing flow separation on the duct wall while increasing the suction on the duct lip. The primary noise sources are identified at the propeller's leading edge and tip. The results reveal that divergent ducts effectively reduce tonal noise at all observer angles but increase broadband noise, attributed to the noise sources at the leading edge of the propeller and the interaction with the duct lip. Additionally, reducing the tip clearance from 2 to 1 mm enhances the total thrust by more than 20% without causing extra noise generation.

1.
S. A.
Rizzi
,
D. L.
Huff
,
D. D.
Boyd
, Jr.
,
P.
Bent
,
B. S.
Henderson
,
K. A.
Pascioni
,
D. C.
Sargent
,
D. L.
Josephson
,
M.
Marsan
,
H.
He
, and
R.
Snider
, “
Urban air mobility noise: Current practice, gaps, and recommendations
,”
Technical Report No. NASA/TP-20205007433
(
NASA
,
2020
).
2.
J. L.
Pereira
, “
Hover and wind-tunnel testing of shrouded rotors for improved micro air vehicle design
,” Ph.D. thesis (
Department of Aerospace Engineering, College Park, University of Maryland
,
Maryland
,
2008
).
3.
J.
Qing
,
Y.
Hu
,
Y.
Wang
,
Z.
Liu
,
X.
Fu
, and
W.
Liu
, “
Kriging assisted integrated rotor-duct optimization for ducted fan in hover
,” AIAA Paper No. AIAA 2019-0007,
2019
.
4.
J.
Gong
,
J.
Ding
, and
L.
Wang
, “
Propeller–duct interaction on the wake dynamics of a ducted propeller
,”
Phys. Fluids
33
,
074102
(
2021
).
5.
T.
Zhang
and
G. N.
Barakos
, “
Review on ducted fans for compound rotorcraft
,”
Aeronaut. J.
124
,
941
974
(
2020
).
6.
A. M.
Malgoezar
,
A.
Vieira
,
M.
Snellen
,
D. G.
Simons
, and
L. L.
Veldhuis
, “
Experimental characterization of noise radiation from a ducted propeller of an unmanned aerial vehicle
,”
Int. J. Aeroacoust.
18
,
372
391
(
2019
).
7.
P.
Ventura Diaz
,
R.
Caracuel Rubio
, and
S.
Yoon
, “
Simulations of ducted and coaxial rotors for air taxi operations
,” AIAA Paper No. AIAA 2019-2825,
2019
.
8.
J.
Guo
,
T.
Zhou
,
Y.
Fang
, and
X.
Zhang
, “
Experimental study on a compact lined circular duct for small-scale propeller noise reduction
,”
Appl. Acoust.
179
,
108062
(
2021
).
9.
S. T.
Go
,
M. J.
Kingan
,
R. S.
McKay
, and
R. N.
Sharma
, “
Turbulent inflow noise produced by a shrouded propeller
,”
J. Sound Vib.
542
,
117366
(
2023
).
10.
S. T.
Go
,
M. J.
Kingan
,
R. S.
McKay
, and
R. N.
Sharma
, “
Theoretical investigation of the turbulent inflow noise produced by a shrouded propeller
,” AIAA Paper No. AIAA 2022-2831,
2022
.
11.
W.
Graf
,
J.
Fleming
, and
W.
Ng
, “
Improving ducted fan UAV aerodynamics in forward flight
,” AIAA Paper No. AIAA 2008-430,
2008
.
12.
T.
Zhang
and
G. N.
Barakos
, “
High-fidelity numerical analysis and optimisation of ducted propeller aerodynamics and acoustics
,”
Aerosp. Sci. Technol.
113
,
106708
(
2021
).
13.
J. E.
Ffowcs Williams
and
D. L.
Hawkings
, “
Sound generation by turbulence and surfaces in arbitrary motion
,”
Philos. Trans. R. Soc., A
264
,
321
342
(
1969
).
14.
A.
Heidebrecht
,
T.
Stańkowski
, and
D.
MacManus
, “
Parametric geometry and CFD process for turbofan nacelles
,” in
ASME Turbo Expo: Turbomachinery Technical Conference and Exposition
,
2016
.
15.
D. F.
Schaller
, “
A technique for shape optimization of ducted fans
,” M.S. thesis (
Department of Aerospace Engineering, Iowa State University
,
Iowa
,
2007
).
16.
P. E.
Farrell
and
J. R.
Maddison
, “
Conservative interpolation between volume meshes by local Galerkin projection
,”
Comput. Methods Appl. Mech. Eng.
200
,
89
100
(
2011
).
17.
P. R.
Spalart
and
S. R.
Allmaras
, “
A one-equation turbulence model for aerodynamic flows
,” AIAA Paper No. AIAA 1992-439,
1992
.
18.
D. B.
Spalding
, “
A single formula for the Law of the wall
,”
J. Appl. Mech.
28
,
455
458
(
1961
).
19.
H. F.
Bento
,
R.
de Vries
, and
L. L.
Veldhuis
, “
Aerodynamic performance and interaction effects of circular and square ducted propellers
,” AIAA Paper No. AIAA 2020-1029,
2020
.
20.
P. R.
Spalart
,
W.-H.
Jou
,
M.
Strelets
, and
S. R.
Allmaras
, “
Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach
,” in
Proceedings of First AFOSR International Conference on DNS/LES
,
Louisiana Tech University
,
Louisiana
,
1997
.
21.
P. R.
Spalart
,
S.
Deck
,
M. L.
Shur
,
K. D.
Squires
,
M. K.
Strelets
, and
A.
Travin
, “
A new version of detached-eddy simulation, resistant to ambiguous grid densities
,”
Theor. Comput. Fluid Dyn.
20
,
181
(
2006
).
22.
H.
Jiang
and
X.
Zhang
, “
An acoustic-wave preserved artificial compressibility method for low-Mach-number aeroacoustic simulations
,”
J. Sound Vib.
516
,
116505
(
2022
).
23.
Y.
Li
,
H.
Wu
,
H.
Jiang
,
S.
Zhong
, and
X.
Zhang
, “
Computational aeroacoustics study of propellers with vibrational motion
,”
AIAA J.
61
,
3091
3107
(
2023
).
24.
G.
Brès
,
F.
Pérot
, and
D.
Freed
, “
A Ffowcs Williams–Hawkings solver for Lattice-Boltzmann based computational aeroacoustics
,” AIAA Paper No. AIAA 2010-3711,
2010
.
25.
R. R.
Mankbadi
,
S. O.
Afari
, and
V. V.
Golubev
, “
High-fidelity simulations of noise generation in a propeller-driven unmanned aerial vehicle
,”
AIAA J.
59
,
1020
1039
(
2021
).
26.
W.
Chen
and
X.
Huang
, “
Wavelet-based beamforming for high-speed rotating acoustic source
,”
IEEE Access
6
,
10231
10239
(
2018
).
27.
W.
Chen
,
H.
Jiang
, and
W.
He
, “
Dipole source-based virtual three-dimensional imaging for propeller noise
,”
Aerosp. Sci. Technol.
124
,
107562
(
2022
).
28.
T.
Zhou
and
R.
Fattah
, “
Tonal noise acoustic interaction characteristics of multi-rotor vehicles
,” AIAA Paper No. AIAA 2017-4054,
2017
.
29.
H.
Wu
,
H.
Jiang
,
P.
Zhou
,
S.
Zhong
,
X.
Zhang
,
G.
Zhou
, and
B.
Chen
, “
On identifying the deterministic components of propeller noise
,”
Aerosp. Sci. Technol.
130
,
107948
(
2022
).
30.
W.
Yi
,
P.
Zhou
,
Y.
Fang
,
J.
Guo
,
S.
Zhong
,
X.
Zhang
,
X.
Huang
,
G.
Zhou
, and
B.
Chen
, “
Design and characterization of a multifunctional low-speed anechoic wind tunnel at HKUST
,”
Aerosp. Sci. Technol.
115
,
106814
(
2021
).
31.
C. S.
Thurman
, “
Computational study of boundary layer effects on stochastic rotor blade vortex shedding noise
,”
Aerosp. Sci. Technol.
131
,
107983
(
2022
).
32.
F.
Farassat
and
G. P.
Succi
, “
A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations
,”
J. Sound Vib.
71
,
399
419
(
1980
).
33.
H.
Jiang
,
H.
Wu
,
W.
Chen
,
P.
Zhou
,
S.
Zhong
,
X.
Zhang
,
G.
Zhou
, and
B.
Chen
, “
Toward high-efficiency low-noise propellers: A numerical and experimental study
,”
Phys. Fluids
34
,
076116
(
2022
).
34.
D.
Yongle
,
S.
Baowei
, and
W.
Peng
, “
Numerical investigation of tip clearance effects on the performance of ducted propeller
,”
Int. J. Naval Archit. Ocean Eng.
7
,
795
804
(
2015
).
You do not currently have access to this content.