The replacement of deteriorated pipe segments in aging water distribution networks often results in hybrid pipelines, consisting of segments of different materials of comparable length. The fact that short segments of polymeric material have a strong effect on the transient response of metallic pipelines authorizes to consider it important to examine the transient behavior of hybrid pipelines. To this end, transient tests were carried out on a high-density polyethylene (HDPE)+ cast iron (CI) hybrid pipeline at the Water Engineering Laboratory (WEL) of the University of Perugia, Italy. As a reference, tests were also carried out on a homogeneous HDPE pipeline with the same total length. The results of the laboratory tests showed that the value of the pressure local extremes (i.e., pressure peaks) was much higher in the homogeneous pipeline than in the hybrid one. On the contrary, the number of pressure peaks is much smaller in the homogeneous pipeline than in the hybrid one. Such features have been explained by analyzing the mechanisms of interaction of pressure waves at the in-series junction between the two different materials.

1.
S. L.
Prescott
and
B.
Ulanicki
, “
Improved control of pressure reducing valves in water distribution networks
,”
J. Hydraul. Eng.
134
,
56
65
(
2008
).
2.
S.
Meniconi
,
B.
Brunone
,
E.
Mazzetti
,
D. B.
Laucelli
, and
G.
Borta
, “
Hydraulic characterization and transient response of pressure reducing valves. Laboratory experiments
,”
J. Hydroinf.
19
,
798
810
(
2017
).
3.
G.
Pezzinga
and
P.
Scandura
, “
Unsteady flow in installations with polymeric additional pipe
,”
J. Hydraul. Eng.
121
,
802
811
(
1995
).
4.
G.
Pezzinga
, “
Unsteady flow in hydraulic networks with polymeric additional pipe
,”
J. Hydraul. Eng.
128
,
238
244
(
2002
).
5.
A.
Triki
, “
Water-hammer control in pressurized-pipe flow using an in-line polymeric short-section
,”
Acta Mech.
227
,
777
793
(
2016
).
6.
J.
Gong
,
M. L.
Stephens
,
M. F.
Lambert
,
A. C.
Zecchin
, and
A. R.
Simpson
, “
Pressure surge suppression using a metallic-plastic-metallic pipe configuration
,”
J. Hydraul. Eng.
144
,
04018025
(
2018
).
7.
A.
Triki
and
M. A.
Chaker
, “
Compound technique-based inline design strategy for water-hammer control in steel pressurized-piping systems
,”
Int. J. Pressure Vessels Piping
169
,
188
203
(
2019
).
8.
M.
Mitosek
and
M.
Chorzelski
, “
Influence of visco-elasticity on pressure wave velocity in polyethylene MDPE pipe
,”
Arch. Hydro-Eng. Environ. Mech.
50
,
127
140
(
2003
).
9.
V.
Tjuatja
,
A.
Keramat
,
B.
Pan
,
H.-F.
Duan
,
B.
Brunone
, and
S.
Meniconi
, “
Transient flow modelling in viscoelastic pipes: A comprehensive review of literature and analysis
,”
Phys. Fluids
35
,
081302
(
2023
).
10.
G.
Pezzinga
,
B.
Brunone
, and
S.
Meniconi
, “
Relevance of pipe period on Kelvin-Voigt viscoelastic parameters: 1-D and 2-D inverse transient analysis
,”
J. Hydraul. Eng.
142
,
04016063
(
2016
).
11.
N.
Bettaieb
,
M. A.
Guidara
, and
E. H.
Haj Taieb
, “
Impact of metallic-plastic pipe configurations on transient pressure response in branched WDN
,”
Int. J. Pressure Vessels Piping
188
,
104204
(
2020
).
12.
L.
Hadj Taieb
,
N.
Bettaieb
,
M. A.
Guidara
,
S.
Elaoud
, and
E.
Haj Taieb
, “
Effect of integrating polymeric pipes on the pressure evolution and failure assessment in cast iron branched networks
,”
Eng. Fract. Mech.
235
,
107158
(
2020
).
13.
R. K.
Garg
and
A.
Kumar
, “
Experimental and numerical investigations of water hammer analysis in pipeline with two different materials and their combined configuration
,”
Int. J. Pressure Vessels Piping
188
,
104219
(
2020
).
14.
M.
Kubrak
,
A.
Kodura
,
A.
Malesińska
, and
K.
Urbanowicz
, “
Water hammer in steel–plastic pipes connected in series
,”
Water
14
,
3107
(
2022
).
15.
B.
Brunone
,
F.
Maietta
,
C.
Capponi
, and
S.
Meniconi
, “
Improvement of the carrying capacity of cast iron pipes due to the coating lapping process
,”
J. Pipeline Syst. Eng. Pract.
13
,
06022001
(
2022
).
16.
A. R.
Halliwell
, “
Velocity of a waterhammer wave in an elastic pipe
,”
J. Hydraul. Div.
89
,
1
21
(
1963
).
17.
E. B.
Wylie
and
V. L.
Streeter
,
Fluid Transients in Systems
(
Prentice Hall
,
Englewood Cliffs, NJ
,
1993
).
18.
J.
Swaffield
and
A.
Boldy
,
Pressure Surges in Pipe and Duct Systems
(
Ashgate Publishing Group
,
Farnham, UK
,
1993
).
19.
J.-S.
Lee
,
W.
Zeng
,
M.
Lambert
,
T.
Hilditch
, and
J.
Gong
, “
Fatigue analysis of metallic-plastic-metallic pipeline systems: A numerical study
,”
Res. Eng.
17
,
100986
(
2023
).
20.
A.
Tijsseling
, “
Water hammer with fluid–structure interaction in thick-walled pipes
,”
Comput. Struct.
85
,
844
851
(
2007
).
21.
S.
Li
,
B. W.
Karney
, and
G.
Liu
, “
FSI research in pipeline systems—A review of the literature
,”
J. Fluids Struct.
57
,
277
297
(
2015
).
22.
R.
Zanganeh
,
E.
Jabbari
,
A.
Tijsseling
, and
A.
Keramat
, “
Fluid-structure interaction in transient-based extended defect detection of pipe walls
,”
J. Hydraul. Eng.
146
,
04020015
(
2020
).
23.
A.
Keramat
,
A.
Tijsseling
,
Q.
Hou
, and
A.
Ahmadi
, “
Fluid–structure interaction with pipe-wall viscoelasticity during water hammer
,”
J. Fluids Struct.
28
,
434
455
(
2012
).
24.
A.
Keramat
,
M.
Fathi-Moghadam
,
R.
Zanganeh
,
M.
Rahmanshahi
,
A. S.
Tijsseling
, and
E.
Jabbari
, “
Experimental investigation of transients-induced fluid-structure interaction in a pipeline with multiple-axial supports
,”
J. Fluids Struct.
93
,
102848
(
2020
).
25.
A.
Colombo
,
P.
Lee
, and
B. W.
Karney
, “
A selective literature review of transient-based leak detection methods
,”
J. Hydro-Environ. Res.
2
,
212
227
(
2009
).
26.
D.
Covas
and
H.
Ramos
, “
Case studies of leak detection and location in water pipe systems by inverse transient analysis
,”
J. Water Resour. Plann. Manage.
136
,
248
257
(
2010
).
27.
Z.
Liu
and
Y.
Kleiner
, “
State of the art review of inspection technologies for condition assessment of water pipes
,”
Measurement
46
,
1
15
(
2013
).
28.
S.
Datta
and
S.
Sarkar
, “
A review on different pipeline fault detection methods
,”
J. Loss Prev. Process Ind.
41
,
97
106
(
2016
).
29.
X.
Xu
and
B.
Karney
, “
An overview of transient fault detection techniques
,” in
Modeling and Monitoring of Pipelines and Networks
(
Springer
,
2017
), pp.
13
37
.
30.
X.
Wang
,
J.
Lin
,
A.
Keramat
,
M. S.
Ghidaoui
,
S.
Meniconi
, and
B.
Brunone
, “
Matched-field processing for leak localization in a viscoelastic pipe: An experimental study
,”
Mech. Syst. Signal Process.
124
,
459
478
(
2019
).
31.
A. H.
Ayati
,
A.
Haghighi
, and
P. J.
Lee
, “
Statistical review of major standpoints in hydraulic transient-based leak detection
,”
J. Hydraul. Struct.
5
,
1
26
(
2019
).
32.
H.
Duan
,
B.
Pan
,
M.
Wang
,
L.
Chen
,
F.
Zheng
, and
Y.
Zhang
, “
State-of the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management
,”
J. Water Supply: Res. Technol.-Aqua
69
,
858
893
(
2020
).
33.
T.-C.
Che
,
H.-F.
Duan
, and
P. J.
Lee
, “
Transient wave-based methods for anomaly detection in fluid pipes: A review
,”
Mech. Syst. Signal Process.
160
,
107874
(
2021
).
34.
B.
Brunone
,
F.
Maietta
,
C.
Capponi
,
A.
Keramat
, and
S.
Meniconi
, “
A review of physical experiments for leak detection in water pipes through transient tests for addressing future research
,”
J. Hydraul. Res.
60
,
894
906
(
2022
).
35.
B.
Brunone
,
S.
Meniconi
, and
C.
Capponi
, “
The damping of pressure peaks during transients for fault detection in pressurized pipelines. An expeditious and manager-oriented diagnosis procedure
,”
J. Hydraul. Eng.
149
,
02523002
(
2023
).
36.
G.
Pezzinga
,
B.
Brunone
,
D.
Cannizzaro
,
M.
Ferrante
,
S.
Meniconi
, and
A.
Berni
, “
Two-dimensional features of viscoelastic models of pipe transients
,”
J. Hydraul. Eng.
140
,
04014036
(
2014
).
37.
F.
Maietta
,
G.
Crispino
,
C.
Capponi
,
C.
Gisonni
,
B.
Brunone
, and
M.
Silvia
(
2023
), “Transient test on laboratory high-density polyethylene pipeline,”
Zenodo
. https://doi.org/10.5281/zenodo.10417585.
You do not currently have access to this content.