We consider a classical problem about dynamic instability that leads to the Langmuir circulation. The problem statement assumes that there is initially a wind-driven shear flow and a plane surface wave propagating in the direction of the flow. The unstable mode is a superposition of (i) shear flow and (ii) surface waves, both modulated in the horizontal spanwise direction and (iii) circulation that is made up with vortices forming near-surface rolls whose axes are coaligned along the shear flow streamlines and whose transverse size corresponds to the modulation period. Usually, the Langmuir circulation is understood as the vortical part of the mode slowly varying in time, which is the combination of the first and the last flows. The novelty of our approach is that we, first, take into account the scattering of the initial surface wave on the slow current. Second, we find the interference of the scattered and the initial waves generating a Stokes drift modulated in the same direction. Third, we establish the subsequent effect of the circulation by the vortex force created by the nonlinear interaction of the initial shear flow and the modulated part of the Stokes drift. Leibovich and Craik previously showed that the third part of the mechanism could maintain the Langmuir circulation. We calculate the growth rate that is approximately twice smaller than that obtained by Craik. The vertical structure of the circulation in the mode consists of two vortices, which corresponds to the next mode in Craik's model.

1.
P. E.
Hamlington
,
L. P.
Van Roekel
,
B.
Fox-Kemper
,
K.
Julien
, and
G. P.
Chini
, “
Langmuir–submesoscale interactions: Descriptive analysis of multiscale frontal spindown simulations
,”
J. Phys. Oceanogr.
44
,
2249
2272
(
2014
).
2.
S. A.
Thorpe
, “
Langmuir circulation
,”
Annu. Rev. Fluid Mech.
36
,
55
79
(
2004
).
3.
M. A. C.
Teixeira
, “
Langmuir circulation and instability
,” in
Encyclopedia of Ocean Sciences
, 3rd ed., edited by
J. K.
Cochran
,
H. J.
Bokuniewicz
, and
P. L.
Yager
(
Academic Press
,
Oxford
,
2019
), pp.
92
106
.
4.
R. A.
Weller
and
J. F.
Price
, “
Langmuir circulation within the oceanic mixed layer
,”
Deep Sea Res. Part A
35
,
711
747
(
1988
).
5.
H.
Chang
,
H. S.
Huntley
,
A. D.
Kirwan
, Jr.
,
D. F.
Carlson
,
J. A.
Mensa
,
S.
Mehta
,
G.
Novelli
,
T. M.
Özgökmen
,
B.
Fox-Kemper
,
B.
Pearson
,
J.
Pearson
,
R. R.
Harcourt
, and
A. C.
Poje
, “
Small-scale dispersion in the presence of Langmuir circulation
,”
J. Phys. Oceanogr.
49
,
3069
3085
(
2019
).
6.
A. D. D.
Craik
, “
The generation of Langmuir circulations by an instability mechanism
,”
J. Fluid Mech.
81
,
209
223
(
1977
).
7.
S.
Leibovich
, “
Langmuir circulation and instability
,” in
Elements of Physical Oceanography: A Derivative Encyclopedia Ocean Sciences
(
Academic Press
,
2009
), Vol.
124
, p.
288
.
8.
A. J.
Faller
and
E. A.
Caponi
, “
Laboratory studies of wind-driven Langmuir circulations
,”
J. Geophys. Res.
83
,
3617
3633
, https://doi.org/10.1029/JC083iC07p03617 (
1978
).
9.
J. A.
Smith
, “
Observed growth of Langmuir circulation
,”
J. Geophys. Res.
97
(
C4
),
5651
, https://doi.org/10.1029/91JC03118 (
1992
).
10.
P. P.
Sullivan
and
J. C.
McWilliams
, “
Langmuir turbulence and filament frontogenesis in the oceanic surface boundary layer
,”
J. Fluid Mech.
879
,
512
553
(
2019
).
11.
A. D. D.
Craik
and
S.
Leibovich
, “
A rational model for Langmuir circulations
,”
J. Fluid Mech.
73
,
401
426
(
1976
).
12.
A. D. D.
Craik
, “
Wave-induced longitudinal-vortex instability in shear flows
,”
J. Fluid Mech.
125
,
37
52
(
1982
).
13.
T.
Kawamura
, “
Numerical investigation of turbulence near a sheared air–water interface. Part 2: Interaction of turbulent shear flow with surface waves
,”
J. Mar. Sci. Technol.
5
,
161
175
(
2000
).
14.
F.
Veron
and
W. K.
Melville
, “
Experiments on the stability and transition of wind-driven water surfaces
,”
J. Fluid Mech.
446
,
25
65
(
2001
).
15.
Y.
Fujiwara
and
Y.
Yoshikawa
, “
Mutual interaction between surface waves and Langmuir circulations observed in wave-resolving numerical simulations
,”
J. Phys. Oceanogr.
50
,
2323
2339
(
2020
).
16.
N.
Suzuki
, “
On the physical mechanisms of the two-way coupling between a surface wave field and a circulation consisting of a roll and streak
,”
J. Fluid Mech.
881
,
906
950
(
2019
).
17.
S.
Leibovich
, “
On the evolution of the system of wind drift currents and Langmuir circulations in the ocean. Part 1. Theory and averaged current
,”
J. Fluid Mech.
79
,
715
743
(
1977
).
18.
L.-A.
Couston
,
M. A.
Jalali
, and
M.-R.
Alam
, “
Shore protection by oblique seabed bars
,”
J. Fluid Mech.
815
,
481
510
(
2017
).
19.
H.
Lamb
,
Hydrodynamics
(
University Press
,
1932
).
20.
D. D.
Holm
, “
The ideal Craik-Leibovich equations
,”
Phys. D: Nonlinear Phenom.
98
,
415
441
(
1996
).
21.
R. H.
Stewart
and
J. W.
Joy
, “
HF radio measurements of surface currents
,” in
Deep Sea Research and Oceanographic Abstracts
(
Elsevier
,
1974
), Vol.
21
, pp.
1039
1049
.
22.
M. S.
Longuet-Higgins
, “
Mass transport in water waves
,”
Philos. Trans. R. Soc. London, Ser. A
245
,
535
581
(
1953
).
23.
J. A.
Nicolás
and
J. M.
Vega
, “
Three-dimensional streaming flows driven by oscillatory boundary layers
,”
Fluid Dyn. Res.
32
,
119
139
(
2003
).
24.
S. V.
Filatov
,
V. M.
Parfenyev
,
S. S.
Vergeles
,
M. Y.
Brazhnikov
,
A. A.
Levchenko
, and
V. V.
Lebedev
, “
Nonlinear generation of vorticity by surface waves
,”
Phys. Rev. Lett.
116
,
054501
(
2016
).
25.
C.
Garrett
, “
Generation of Langmuir circulations by surface waves—a feedback mechanism
,”
J. Mar. Res.
34
,
117
(
1976
).
26.
A. A.
Abrashkin
and
E. N.
Pelinovsky
, “
Gerstner waves and their generalizations in hydrodynamics and geophysics
,”
Phys. Usp.
65
,
453
467
(
2022
).
27.
S.
Leibovich
, “
The form and dynamics of Langmuir circulations
,”
Annu. Rev. Fluid Mech.
15
,
391
427
(
1983
).
28.
A. D. D.
Craik
, “
A wave-interaction model for the generation of windrows
,”
J. Fluid Mech.
41
,
801
821
(
1970
).
29.
S.
Manna
and
A.
Dhar
, “
Modulational instability of obliquely interacting capillary-gravity waves over infinite depth
,”
Arch. Mech.
73
,
583
598
(
2021
).
30.
H.
Yin
,
Q.
Pan
, and
K.
Chow
, “
Modeling ‘crossing sea state’ wave patterns in layered and stratified fluids
,”
Phys. Rev. Fluids
8
,
014802
(
2023
).
31.
S. V.
Filatov
,
A. V.
Orlov
,
M. Y.
Brazhnikov
, and
A. A.
Levchenko
, “
Experimental simulation of the generation of a vortex flow on a water surface by a wave cascade
,”
JETP Lett.
108
,
519
526
(
2018
).
32.
S.
Filatov
,
A.
Poplevin
,
A.
Levchenko
, and
V.
Parfenyev
, “
Generation of stripe-like vortex flow by noncollinear waves on the water surface
,”
Phys. D: Nonlinear Phenom.
434
,
133218
(
2022
).
33.
V.
Parfenyev
,
S.
Filatov
,
M. Y.
Brazhnikov
,
S.
Vergeles
, and
A.
Levchenko
, “
Formation and decay of eddy currents generated by crossed surface waves
,”
Phys. Rev. Fluids
4
,
114701
(
2019
).
34.
R.
Colombi
,
N.
Rohde
,
M.
Schlüter
, and
A.
von Kameke
, “
Coexistence of inverse and direct energy cascades in Faraday waves
,”
Fluids
7
,
148
(
2022
).
You do not currently have access to this content.