This study investigates the utilization of a trapezoidal cavity with a corrugated bottom wall containing a Carreau hybrid nanofluid composed of water, aluminum, and copper nanoparticles. A heated, rotating cylinder is placed at the center of the enclosure in the presence of an external magnetic field. The impact of Forchheimer and Brinkman porous medium models on the hybrid nanofluid is examined. Three different inlet–outlet placement configurations are considered to investigate their influence on heat transfer. The governing equations for fluid flow and heat transfer are solved numerically. Through simulations, a range of flow-controlling variables is systematically adjusted, including the Darcy number, Reynolds number, Hartmann number, nanoparticle volume fraction, undulation on the hot bottom wall, power law index, and rotational speed of the inner heated cylinder. The results demonstrate that the hybrid nanofluid and rotating cylinder significantly enhance heat transfer within the trapezoidal cavity. Higher values of the Darcy number, Reynolds number, and nanoparticle volume fraction lead to increased heat transfer rates. The placement configuration of the inlet and outlet ports also affects heat transfer performance, with the bottom-top configuration yielding the best results. Furthermore, a comparative analysis of flow profiles and heat distribution is conducted using the multiple expression programing technique. The proposed model accurately predicts the flow and heat transfer characteristics in the trapezoidal cavity, as validated through comparison with provided data sets.

1.
M.
Babajani
,
B.
Ghasemi
, and
A.
Raisi
, “
Numerical study on mixed convection cooling of solar cells with nanofluid
,”
Alexandria Eng. J.
56
,
93
103
(
2017
).
2.
K.
Ezzaraa
,
A.
Bahlaoui
,
I.
Arroub
,
A.
Raji
,
M.
Hasnaoui
, and
M.
Naïmi
, “
Radiation effect on mixed convection cooling in a ventilated horizontal cavity with multiple ports
,”
Int. J. Mech. Sci.
153–154
,
310
320
(
2019
).
3.
T.
Radhakrishnan
,
A.
Verma
,
C.
Balaji
, and
S.
Venkateshan
, “
An experimental and numerical investigation of mixed convection from a heat generating element in a ventilated cavity
,”
Exp. Therm. Fluid Sci.
32
,
502
520
(
2007
).
4.
I.
Tmartnhad
,
M. E.
Alami
,
M.
Najam
, and
A.
Oubarra
, “
Numerical investigation on mixed convection flow in a trapezoidal cavity heated from below
,”
Energy Convers. Manage.
49
,
3205
3210
(
2008
).
5.
L.
Boutina
and
R.
Bessaïh
, “
Numerical simulation of mixed convection air-cooling of electronic components mounted in an inclined channel
,”
Appl. Therm. Eng.
31
,
2052
2062
(
2011
).
6.
G.
Cesini
,
M.
Paroncini
,
G.
Cortella
, and
M.
Manzan
, “
Natural convection from a horizontal cylinder in a rectangular cavity
,”
Int. J. Heat Mass Transfer
42
,
1801
1811
(
1999
).
7.
H.
Khozeymeh-Nezhad
,
Y.
Basati
, and
H.
Niazmand
, “
Numerical thermal analysis of a hot noncircular rotating cylinder in the presence of a magnetic field
,”
J. Heat Transfer
143
,
112901
(
2021
).
8.
A. J.
Chamkha
,
F.
Selimefendigil
, and
M.
Ismael
, “
Mixed convection in a partially layered porous cavity with an inner rotating cylinder
,”
Numer. Heat Transfer A
69
,
659
675
(
2016
).
9.
A.
Aly
,
E.
Mohamed
,
H.
Oztop
, and
N.
Alsedais
, “
Rotating cylinder and magnetic field on solid particles diffusion inside a porous cavity filled with a nanofluid
,”
Nanomater. Nanotechnol.
11
,
184798042110342
184798042110317
(
2021
).
10.
W.
Al-Kouz
,
B.
Bendrer
,
A.
Aissa
,
A.
Almuhtady
,
W.
Jamshed
,
K.
Nisar
,
A.
Mourad
,
N.
Alshehri
, and
M.
Zakarya
, “
Galerkin finite element analysis of magneto two-phase nanofluid flowing in double wavy enclosure comprehending an adiabatic rotating cylinder
,”
Sci. Rep.
11
,
16494
(
2021
).
11.
M.
Hamid
,
Z. H.
Khan
,
W. A.
Khan
, and
Z.
Tian
, “
Natural convection inside a trapezoidal cavity under multidirectional magnetic impacts: Finite element characterization
,”
Phys. Fluids
35
,
093618
(
2023
).
12.
M.
Sarafraz
,
A.
Arya
,
F.
Hormozi
, and
V.
Nikkhah
, “
On the convective thermal performance of a CPU cooler working with liquid gallium and CuO/water nanofluid: A comparative study
,”
Appl. Therm. Eng.
112
,
1373
1381
(
2017
).
13.
A.
Zeiny
,
H.
Jin
,
L.
Bai
,
G.
Lin
, and
D.
Wen
, “
A comparative study of direct absorption nanofluids for solar thermal applications
,”
Sol. Energy
161
,
74
82
(
2018
).
14.
H.
Saadati
,
K.
Hadad
, and
A.
Rabiee
, “
Safety margin and fuel cycle period enhancements of VVER-1000 nuclear reactor using water/silver nanofluid
,”
Nucl. Eng. Technol.
50
,
639
647
(
2018
).
15.
H.
Xian
,
N.
Sidik
, and
G.
Najafi
, “
Recent state of nanofluid in automobile cooling systems
,”
J. Therm. Anal. Calorim.
135
,
981
1008
(
2019
).
16.
S.
Dehdashtian
,
N.
Behbahanian
,
K.
Taherzadeh
, and
B.
Hashemi
, “
Development of electrochemical sensor based on multiwall carbon nanotube for determination of anticancer drug idarubicin in biological samples
,”
Adv. Nanochem.
1
,
22
28
(
2019
).
17.
S.
Jabbari
,
S.
Jafari
,
D.
Dehnad
, and
S.
Shahidi
, “
Changes in lycopene content and quality of tomato juice during thermal processing by a nanofluid heating medium
,”
J. Food Eng.
230
,
1
7
(
2018
).
18.
A.
Kumar
,
S.
Ghosh
, and
S.
Aravindan
, “
Experimental investigations on surface grinding of silicon nitride subjected to mono and hybrid nanofluids
,”
Ceram. Int.
45
,
17447
17466
(
2019
).
19.
E.
Firouzfar
,
M.
Soltanieh
,
S.
Noie
, and
S.
Saidi
, “
Energy saving in HVAC systems using nanofluid
,”
Appl. Therm. Eng.
31
,
1543
1545
(
2011
).
20.
M.
Esfe
,
A.
Arani
,
M.
Rezaie
,
W.-M.
Yan
, and
A.
Karimipour
, “
Experimental determination of thermal conductivity and dynamic viscosity of Ag-MgO/water hybrid nanofluid
,”
Int. Commun. Heat Mass Transfer
66
,
189
195
(
2015
).
21.
A.
Chamkha
,
T.
Armaghani
,
M.
Mansour
,
A.
Rashad
, and
H.
Kargarsharifabad
, “
MHD convection of an Al2O3-Cu/water hybrid nanofluid in an inclined porous cavity with internal heat generation/absorption
,”
Iranian J. Chem. Chem. Eng.
41
,
936
956
(
2022
).
22.
M.
Qureshi
,
S.
Hussain
, and
M.
Sadiq
, “
Numerical simulations of MHD mixed convection of hybrid nanofluid flow in a horizontal channel with cavity: Impact on heat transfer and hydrodynamic forces
,”
Case Stud. Therm. Eng.
27
,
101321
(
2021
).
23.
M.
Asmadi
,
R. M.
Kasmani
,
Z.
Siri
, and
H.
Saleh
, “
Thermal performance analysis for moderate Rayleigh numbers of Newtonian hybrid nanofluid-filled U-shaped cavity with various thermal profiles
,”
Phys. Fluids
33
,
032006
(
2021
).
24.
T.
Ruvo
,
S.
Saha
,
S.
Mojumder
, and
S.
Saha
, “
Mixed convection in an open t-shaped cavity utilizing the effect of different inflow conditions with Al2O3-water nanofluid flow
,”
Results Eng.
17
,
100862
(
2023
).
25.
B. K.
Gowda
,
M.
Rajagopal
,
Aswatha
, and
K.
Seetharamu
, “
Heat transfer in a side heated trapezoidal cavity with openings
,”
Eng. Sci. Technol.
22
,
153
167
(
2019
).
26.
A.
Mahmoudi
,
M.
Shahi
, and
F.
Talebi
, “
Effect of inlet and outlet location on the mixed convective cooling inside the ventilated cavity subjected to an external nanofluid
,”
Int. Commun. Heat Mass Transfer
37
,
1158
1173
(
2010
).
27.
S.
Kherroubi
,
K.
Ragui
,
A.
Bensaci
,
N.
Labsi
,
A.
Boutra
, and
Y.
Benkahla
, “
Effect of the second outlet location and the applied magnetic field within a ventilated cubic cavity crossed by a nanofluid on mixed convection mode: Best configurations
,”
J. Therm. Anal. Calorim.
139
,
2243
2264
(
2020
).
28.
D.
Zhang
,
J.
Zhang
,
T.
Sun
, and
Y.
Jiang
, “
Ventilated cavity dynamics of an axisymmetric body under the influence of a structure
,”
Phys. Fluids
35
,
055112
(
2023
).
29.
R.
Carlos
,
C.
Kahn
, and
S.
Halabi
, “
Data science: Big data, machine learning, and artificial intelligence
,”
J. Am. College Radiol.
15
,
497
498
(
2018
).
30.
A.
Behnood
and
E.
Golafshani
, “
Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves
,”
J. Cleaner Prod.
202
,
54
64
(
2018
).
31.
A.
Gandomi
,
S.
Babanajad
,
A.
Alavi
, and
Y.
Farnam
, “
Novel approach to strength modeling of concrete under triaxial compression
,”
J. Mater. Civ. Eng.
24
,
1132
1143
(
2012
).
32.
C.
Ferreira
,
Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence
(
Springer
,
2006
), Vol.
21
.
33.
S.
Babanajad
,
A.
Gandomi
,
D.
Mohammadzadeh
, and
A.
Alavi
, “
Numerical modeling of concrete strength under multiaxial confinement pressures using linear genetic programming
,”
Autom. Constr.
36
,
136
144
(
2013
).
34.
M.
Oltean
and
D.
Dumitrescu
, “
Multi expression programming
,” Technical Report No. UBB-01-2002,
2002
.
35.
A.
Arabshahi
,
N.
Gharaei-Moghaddam
, and
M.
Tavakkolizadeh
, “
Development of applicable design models for concrete columns confined with aramid fiber reinforced polymer using multi-expression programming
,” in
Structures
(
Elsevier
,
2020
), Vol.
23
, pp.
225
244
.
36.
C.
Ferreira
, “
Gene expression programming in problem solving
,” in
Soft Computing and Industry: Recent Applications
(
Springer
,
2002
), pp.
635
653
.
37.
M.
Mkhatshwa
and
M.
Khumalo
, “
Irreversibility scrutinization on EMHD Darcy-Forchheimer slip flow of Carreau hybrid nanofluid through a stretchable surface in porous medium with temperature-variant properties
,”
Heat Trans.
52
,
395
429
(
2023
).
38.
D.
Mandal
,
N.
Biswas
,
N.
Manna
,
D.
Gayen
,
R.
Gorla
, and
A.
Chamkha
, “
Thermo-fluidic transport process in a novel m-shaped cavity packed with non-Darcian porous medium and hybrid nanofluid: Application of artificial neural network (ANN)
,”
Phys. Fluids
34
,
033608
(
2022
).
39.
A.
Alzahrani
,
M.
Ullah
,
A.
Alshomrani
, and
T.
Gul
, “
Hybrid nanofluid flow in a Darcy-Forchheimer permeable medium over a flat plate due to solar radiation
,”
Case Stud. Therm. Eng.
26
,
100955
(
2021
).
40.
S.
Jakeer
,
P.
Reddy
,
A.
Rashad
, and
H.
Nabwey
, “
Impact of heated obstacle position on magneto-hybrid nanofluid flow in a lid-driven porous cavity with Cattaneo-Christov heat flux pattern
,”
Alexandria Eng. J.
60
,
821
835
(
2021
).
41.
A.
Maneengam
,
T.
Bouzennada
,
A.
Abderrahmane
,
K.
Ghachem
,
L.
Kolsi
,
O.
Younis
,
K.
Guedri
, and
W.
Weera
, “
Numerical study of 3D MHD mixed convection and entropy generation in trapezoidal porous enclosure filled with a hybrid nanofluid: Effect of zigzag wall and spinning inner cylinder
,”
Nanomaterials
12
,
1974
(
2022
).
42.
B.
Dyne
and
J.
Heinrich
, “
Physically correct penalty-like formulations for accurate pressure calculation in finite element algorithms of the Navier-Stokes equations
,”
Numer. Methods. Eng.
36
,
3883
3902
(
1993
).
43.
J.
Heinrich
and
C. A.
Vionnet
, “
The penalty method for the Navier-Stokes equations
,”
ARCO
2
,
51
65
(
1995
).
44.
S.
Pandey
,
S.
Yoon
,
S.
Balachandar
, and
M.
Ha
, “
Experimental and numerical investigations of thermal and flow characteristics of a shear-thinning non-Newtonian fluid in a differentially heated cavity
,”
Int. J. Heat Mass Transfer
187
,
122570
(
2022
).
45.
K.
Mehmood
,
S.
Hussain
, and
M.
Sagheer
, “
Mixed convection in alumina-water nanofluid filled lid-driven square cavity with an isothermally heated square blockage inside with magnetic field effect: Introduction
,”
Int. J. Heat Mass Transfer
109
,
397
409
(
2017
).
46.
I.
Chabani
,
F.
Mebarek-Oudina
, and
A.
Ismail
, “
MHD flow of a hybrid nano-fluid in a triangular enclosure with zigzags and an elliptic obstacle
,”
Micromachines
13
,
224
(
2022
).
47.
M.
Oltean
and
C.
Groşan
, “
A comparison of several linear genetic programming techniques
,”
Complex Syst.
14
,
285
313
(
2003
).
48.
M.
Oltean
and
C.
Groşan
, “
Evolving evolutionary algorithms using multi expression programming
,” in
Lecture Notes in Computer Science
(
Springer
,
Berlin Heidelberg
,
2003
), pp.
651
658
.
49.
A.
Alavi
,
A.
Gandomi
,
M.
Sahab
, and
M.
Gandomi
, “
Multi expression programming: A new approach to formulation of soil classification
,”
Eng. Comput.
26
,
111
118
(
2010
).
50.
Z.
Cheng
,
W.
Zhou
, and
A.
Garg
, “
Genetic programming model for estimating soil suction in shallow soil layers in the vicinity of a tree
,”
Eng. Geology
268
,
105506
(
2020
).
51.
K.
Khan
,
M.
Ashfaq
,
M.
Iqbal
,
M.
Khan
,
M.
Amin
,
F.
Shalabi
,
M.
Faraz
, and
F.
Jalal
, “
Multi expression programming model for strength prediction of fly-ash-treated alkali-contaminated soils
,”
Materials
15
,
4025
(
2022
).
52.
M.-T.
Puth
,
M.
Neuhäuser
, and
G.
Ruxton
, “
Effective use of Pearson's product-moment correlation coefficient
,”
Animal Behav.
93
,
183
189
(
2014
).
53.
I.
Azim
,
J.
Yang
,
M.
Javed
,
M.
Iqbal
,
Z.
Mahmood
,
F.
Wang
, and
Q.
Liu
, “
Prediction model for compressive arch action capacity of RC frame structures under column removal scenario using gene expression programming
,” in
Structures
(
Elsevier
,
2020
), Vol.
25
, pp.
212
228
.
54.
F.
Jalal
,
Y.
Xu
,
M.
Iqbal
,
B.
Jamhiri
, and
M.
Javed
, “
Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms
,”
Transp. Geotechnics
30
,
100608
(
2021
).
55.
M.
Usama
,
H.
Gardezi
,
F.
Jalal
,
M.
Rehman
,
N.
Javed
,
S.
Janjua
, and
M.
Iqbal
, “
Predictive modelling of compression strength of waste GP/FA blended expansive soils using multi-expression programming
,”
Constr. Build. Mater.
392
,
131956
(
2023
).
You do not currently have access to this content.