A Gaussian mixture model (GMM) was implemented to investigate the relationship between the liquid holdup (in various parts of the flow) and the pressure for different experimental realizations of high-viscosity gas–liquid flows. We considered a Newtonian fluid with a constant viscosity of 6 Pa s (600 cP) under a laboratory-controlled temperature. Because the pressure and the holdup do not exhibit a clear-cut relationship in the time domain, a supervised classification algorithm and a “deep” neural network (DNN) were first applied to classify the data points and predict average holdup values. Then, the GMM was applied to determine the holdup in various liquid aggregation structures of the flow as a function of the pressure. The growth rates of the cumulative lengths of the liquid structures (i.e., slug body, mixing front, and liquid film) and the gas bubbles were obtained. The GMM predicted holdup values were in close agreement with the experimental data.

1.
L.
Torres
,
J.
Noguera
,
J. E. V.
Guzmán
,
J.
Hernández
,
M.
Sanjuan
, and
A.
Palacio-Pérez
, “
Pressure signal analysis for the characterization of high-velocity two-phase flows in horizontal pipes
,”
J. Mar. Sci. Eng.
8
,
1000
1014
(
2020
).
2.
H.
Matsubara
and
K.
Naito
, “
Effect of liquid viscosity on flow patterns of gas-liquid two-phase flow in a horizontal pipe
,”
Int. J. Multiphase Flow
37
,
1277
1281
(
2011
).
3.
C.
Foletti
,
S.
Farisè
,
B.
Grassi
,
D.
Strazza
,
M.
Lancini
, and
P.
Poesio
, “
Experimental investigation on two-phase air/high-viscosity-oil flow in a horizontal pipe
,”
Chem. Eng. Sci.
66
,
5968
5975
(
2011
).
4.
J.
Hernández
,
D. F.
Galaviz
,
L.
Torres
,
A.
Palacio-Pérez
,
A.
Rodríguez-Valdés
, and
J. E. V.
Guzmán
, “
Evolution of high-viscosity gas-liquid flows as viewed through a detrended fluctuation characterization
,”
Processes
7
,
822
(
2019
).
5.
R.
Meyer
,
E. D.
Attanasi
, and
P.
Freeman
, “
Heavy oil and natural bitumen resources in geological basins of the world
,”
U.S. Geol. Surv.
1
,
1
42
(
2007
).
6.
S.
Sorrel
,
J.
Speirs
,
R.
Bentley
,
R.
Miller
, and
E.
Thompson
, “
Shaping the global oil peak: A review of the evidence on field sizes, reserve growth, decline rates and depletion rates
,”
Energy
37
,
709
724
(
2012
).
7.
E.
Hoog
,
A.
Talmon
, and
C.
van Ree
, “
Unstable transients affecting flow assurance during hydraulic transportation of granular two-phase slurries
,”
J. Hydraul. Eng.
147
,
1
12
(
2021
).
8.
J. Y.
Qian
,
X. J.
Li
,
Z.
Wu
,
Z. J.
Jin
, and
B.
Sunden
, “
A comprehensive review on liquid-liquid two-phase flow in microchannel: Flow pattern and mass transfer
,”
Microfluid. Nanofluid.
116
,
1
30
(
2019
).
9.
P.
Jaiswall
,
U.
Kumar
, and
K. G.
Biswas
, “
Liquid-liquid flow through micro dimensional reactors: A review on hydrodynamics, mass transfer, and reaction kinetics
,”
Exp. Comput. Multiphase Flow
4
,
193
211
(
2022
).
10.
C.
Lareo
,
P. J.
Fryer
, and
M.
Barigou
, “
The fluid mechanics of two-phase solid-liquid food flows: A review
,”
Trans. Inst. Chem. Eng.
75
,
1
12
(
1997
).
11.
K. P.
Venkatesh Babu
and
S.
Pranesh
, “
Linear and non linear analysis of double diffusive convection in a vertically oscillating couple stress fluid with cross diffusion effects
,”
Int. J. Appl. Eng. Res.
13
,
16498
16508
(
2018
).
12.
H.
Zhang
,
C.
Sarica
, and
E.
Pereyra
, “
Review of high-viscosity oil multiphase pipe flow
,”
Energy Fuels
26
,
3979
3985
(
2012
).
13.
V.
Bertola
, “
Experimental characterization of gas–liquid intermittent subregimes by phase density function measurements
,”
Exp. Fluids
34
,
122
129
(
2003
).
14.
M.
Chaari
,
A. C.
Seibi
,
J. B.
Hmida
, and
A.
Fekih
, “
An optimized artificial neural network unifying model for steady-state liquid holdup estimation in two-phase gas-liquid flow
,”
J. Fluids Eng.
140
,
101301
(
2018
).
15.
A.
AlSaif
,
A.
Al-Sarkhi
,
K.
Ismaila
, and
M.
Abdulkadir
, “
Road map to develop an artificial neural network to predict two-phase flow regime in inclined pipes
,”
J. Pet. Sci. Eng.
217
,
110877
(
2022
).
16.
G. H.
Abdul-Majeed
,
Y.
Al-Dunainawi
,
G.
Soto-Cortes
, and
J. A.
Al-Sudani
, “
Neural network model to predict slug frequency of low-viscosity two-phase flow
,”
SPE J.
26
,
1290
1301
(
2021
).
17.
W.
Wang
,
K.
Sefiane
,
G.
Duursma
,
X.
Liang
, and
Y.
Chen
, “
Void fraction measurement of gas-liquid two-phase flow based on empirical mode decomposition and artificial neural networks
,”
Heat Transfer Eng.
40
,
1403
1416
(
2019
).
18.
M. E.
Shippen
and
S. L.
Scott
, “
A neural network model for prediction of liquid holdup in two-phase horizontal flow
,”
SPE Prod. Facil.
19
,
67
76
(
2004
).
19.
E. S. A.
Osman
, “
Artificial neural network models for identifying flow regimes and predicting liquid holdup in horizontal multiphase flow
,”
SPE Prod. Facil.
19
,
33
40
(
2004
).
20.
E.
Al-Safran
,
C.
Kora
, and
C.
Sarica
, “
Prediction of slug liquid holdup in high viscosity liquid and gas two-phase flow in horizontal pipes
,”
J. Pet. Sci. Eng.
133
,
566
575
(
2015
).
21.
R.
Xiao
,
K.
Li
,
L.
Sun
,
J.
Zhao
,
J.
Xing
,
P.
Xing
, and
H.
Wang
, “
The prediction of liquid holdup in horizontal pipe with bp neural network
,”
Energy Sci. Eng.
8
,
2159
2168
(
2020
).
22.
L.
OuYang
,
N.
Jin
, and
W.
Ren
, “
A new deep neural network framework with multivariate time series for two-phase flow pattern identification
,”
Expert Syst. Appl.
205
,
117704
117717
(
2022
).
23.
L.
Hernández
,
J. E.
Juliá
,
S.
Chiva
,
S.
Paranjape
, and
M.
Ishii
, “
Fast classification of two-phase flow regimes based on conductivity signals and artificial neural networks
,”
Meas. Sci. Technol.
17
(
6
),
1511
(
2006
).
24.
M.
Du
,
H.
Yin
,
X.
Chen
, and
X.
Wang
, “
Oil-in-water two-phase flow pattern identification from experimental snapshots using convolutional neural network
,”
IEEE Trans.: Spec. Sect. Big Data Learn. Discovery
7
,
6219
6225
(
2018
).
25.
M. A.
Halali
,
V.
Azari
,
M.
Arabloo
, and
A. H.
Mohammadi
, “
Application of a radial basis function neural network to estimate pressure gradient in water-oil pipelines
,”
J. Taiwan Inst. Chem. Eng.
58
,
189
202
(
2016
).
26.
F.
Dong
,
W.
Wu
, and
S.
Zhang
, “
Flow state monitoring of gas-water two-phase flow using multi-Gaussian mixture model based on canonical variate analysis
,”
Flow Meas. Instrum.
79
,
101904
101911
(
2021
).
27.
ITS
,
Industrial Tomography Systems
(
ITS
,
2023
).
28.
S. P.
Lloyd
, “
Least squares quantization in PCM
,”
IEEE Trans. Inf. Theory
28
,
129
137
(
1982
).
29.
J. M.
Phillips
,
Mathematical Foundations for Data Analysis
, Springer Series in the Data Sciences (
Springer
,
2021
).
30.
X.
Wu
,
V.
Kumar
,
J. R.
Quinlan
,
J.
Ghosh
,
Q.
Yang
,
H.
Motoda
,
G. J.
McLachlan
,
A.
Ng
,
B.
Liu
,
P. S.
Yu
,
Z. Z.
H
,
M.
Steinbach
,
D. J.
Hand
, and
D.
Steinberg
, “
Top 10 algorithms in data mining
,”
Knowl. Inf. Syst.
14
,
1
37
(
2008
).
31.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
32.
I.
Neutelings
, see Tikz.net for “
Neural Networks
,”
2021
.
33.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2017
).
34.
K.
Pearson
, “
Contributions to the mathematical theory of evolution
,”
Philos. Trans. R. Soc. London, Ser. A
185
,
71
110
(
1894
).
35.
K.
Pearson
, “
Mathematical contributions to the theory of evolution. III. Regression, heredity, and panmixia
,”
Philos. Trans. R. Soc. London, Ser. A
187
,
253
318
(
1896
).
36.
Y.
Dong
and
D.
Li
,
Automatic Speech Recognition: A Deep Learning Approach
(
Springer-Verlag
,
2015
).
37.
A. P.
Dempster
,
N. M.
Laird
, and
D. B.
Rubin
, “
Maximum likelihood from incomplete data via the EM algorithm
,”
J. R. Stat. Soc. B
39
,
1
38
(
1976
).
38.
K. P.
Burnham
and
D. R.
Anderson
, “
Multimodal inference: Understanding AIC and BIC in model selection
,”
Sociol. Methods Res.
33
,
261
303
(
2004
).
39.
E.
Wit
,
E.
van den Huevel
, and
J.
Romeijen
, “
‘all models are wrong…’: An introduction to model uncertainty
,”
Stat. Neerl.
66
,
217
236
(
2012
).
40.
G.
Schwarz
, “
Estimating the dimension of a model
,”
Ann. Stat.
6
,
461
464
(
1978
).
41.
Y. D.
Baba
,
A. M.
Aliyu
,
A. E.
Archibong
,
M.
Abdulkadir
,
L.
Lao
, and
H.
Yeung
, “
Slug length for high viscosity oil-gas flow in horizontal pipes: Experiments and prediction
,”
J. Pet. Sci. Eng.
165
,
397
411
(
2018
).
You do not currently have access to this content.