Polymer rheology profoundly influences the intricate dynamics of material extrusion in fused filament fabrication (FFF). This numerical study, which uses the Giesekus model fed with a full rheometric experimental dataset, meticulously examines the molten flow patterns inside the printing nozzle in FFF. Our findings reveal new insight into the interplay between elastic stresses and complex flow patterns, highlighting their substantial role in forming upstream vortices. The parametric map αλ from the Giesekus model allowed us to sort the materials and connect the polymer rheology with the FFF nozzle flow dynamics. The identification of elastic instabilities, the characterization of flow types, and the correlation between fluid rheology and pressure drop variations mark significant advancements in understanding FFF processes. These insights pave the way for tailored nozzle designs, promising enhanced efficiency and reliability in FFF-based additive manufacturing.

1.
ISO
,
Additive Manufacturing—General Principles—Fundamentals and Vocabulary, Standard
(
International Organization for Standardization
,
Geneva
,
2021
).
2.
S. S.
Crump
, “
Modeling apparatus for three-dimensional objects
,” US patent US5340433A (
2011
).
3.
J. C.
Najmon
,
S.
Raeisi
, and
A.
Tovar
, “
Review of additive manufacturing technologies and applications in the aerospace industry
,” in
Additive Manufacturing for the Aerospace Industry
, edited by
F.
Froes
and
R.
Boyer
(
Elsevier
,
2019
), pp.
7
31
.
4.
H.
Klippstein
,
A.
Diaz De Cerio Sanchez
,
H.
Hassanin
,
Y.
Zweiri
, and
L.
Seneviratne
, “
Fused deposition modeling for unmanned aerial vehicles (UAVs): A review
,”
Adv. Eng. Mater.
20
(
2
),
1700552
(
2018
).
5.
A.
Lalehpour
and
A.
Barari
, “
Post processing for fused deposition modeling parts with acetone vapour bath
,”
IFAC-PapersOnLine
49
(
31
),
42
48
(
2016
).
6.
A. P.
Valerga
,
M.
Batista
,
S. R.
Fernandez-Vidal
, and
A. J.
Gamez
, “
Impact of chemical post-processing in fused deposition modelling (FDM) on polylactic acid (PLA) surface quality and structure
,”
Polymers
11
(
3
),
566
(
2019
).
7.
R. B.
Kristiawan
,
F.
Imaduddin
,
D.
Ariawan
,
Ubaidillah
, and
Z.
Arifin
, “
A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters
,”
Open Eng.
11
(
1
),
639
649
(
2021
).
8.
E. L.
Gilmer
,
D.
Miller
,
C. A.
Chatham
,
C.
Zawaski
,
J. J.
Fallon
,
A.
Pekkanen
,
T. E.
Long
,
C.
Williams
, and
M.
Bortner
, “
Model analysis of feedstock behavior in fused filament fabrication: Enabling rapid materials screening
,”
Polymer
152
,
51–61
(
2018
).
9.
A.
Das
,
E. L.
Gilmer
,
S.
Biria
, and
M. J.
Bortner
, “
Importance of polymer rheology on material extrusion additive manufacturing: Correlating process physics to print properties
,”
ACS Appl. Polym. Mater.
3
(
3
),
1218
1249
(
2021
).
10.
T. A.
Osswald
,
J.
Puentes
, and
J.
Kattinger
, “
Fused filament fabrication melting model
,”
Addit. Manuf.
22
,
51
59
(
2018
).
11.
X.
Gao
,
S.
Qi
,
X.
Kuang
,
Y.
Su
,
J.
Li
, and
D.
Wang
, “
Fused filament fabrication of polymer materials: A review of interlayer bond
,”
Addit. Manuf.
37
,
101658
(
2021
).
12.
A.
Yadav
,
P.
Rohru
,
A.
Babbar
,
R.
Kumar
,
N.
Ranjan
,
J. S.
Chohan
,
R.
Kumar
, and
M.
Gupta
, “
Fused filament fabrication: A state-of-the-art review of the technology, materials, properties and defects
,”
Int. J. Interact. Des. Manuf.
17
,
2867
(
2023
).
13.
G. H.
McKinley
,
W. P.
Raiford
,
R. A.
Brown
, and
R. C.
Armstrong
, “
Nonlinear dynamics of viscoelastic flow in axisymmetric abrupt contractions
,”
J. Fluid Mech.
223
(
1
),
411
(
1991
).
14.
M. S.
Oliveira
,
P. J.
Oliveira
,
F. T.
Pinho
, and
M. A.
Alves
, “
Effect of contraction ratio upon viscoelastic flow in contractions: The axisymmetric case
,”
J. Non-Newtonian Fluid Mech.
147
(
1
),
92
108
(
2007
).
15.
F. P.
Baaijens
, “
Numerical analysis of start-up planar and axisymmetric contraction flows using multi-mode differential constitutive models
,”
J. Non-Newtonian Fluid Mech.
48
(
1–2
),
147
180
(
1993
).
16.
J. P.
Rothstein
and
G. H.
McKinley
, “
Extensional flow of a polystyrene Boger fluid through a 4:1:4 axisymmetric contraction-expansion
,”
J. Non-Newtonian Fluid Mech.
86
(
1
),
61
88
(
1999
).
17.
J.
Rothstein
and
G.
McKinley
, “
The axisymmetric contraction-expansion: The role of extensional rheology on vortex growth dynamics and the enhanced pressure drop
,”
J. Non-Newtonian Fluid Mech.
98
(
1
),
33
63
(
2001
).
18.
F.
Pimenta
,
K.
Toda-Peters
,
A. Q.
Shen
,
M. A.
Alves
, and
S. J.
Haward
, “
Viscous flow through microfabricated axisymmetric contraction/expansion geometries
,”
Exp. Fluids
61
(
9
),
204
(
2020
).
19.
R. J.
Poole
, “
Inelastic and flow-type parameter models for non-Newtonian fluids
,”
J. Non-Newtonian Fluid Mech.
320
,
105106
(
2023
).
20.
R.
Mendes
,
P.
Fanzio
,
L.
Campo-Deaño
, and
F.
Galindo-Rosales
, “
Microfluidics as a platform for the analysis of 3D printing problems
,”
Materials
12
,
2839
(
2019
).
21.
T.
Schuller
,
P.
Fanzio
, and
F.
Galindo-Rosales
, “
Analysis of the importance of shear-induced elastic stresses in material extrusion
,”
Addit. Manuf.
57
,
102952
(
2022
).
22.
S.
de Vries
,
T.
Schuller
,
P.
Fanzio
, and
F.
Galindo-Rosales
, “
Pressure drop non-linearities in material extrusion additive manufacturing: A novel approach for pressure monitoring and numerical modeling
,”
Addit. Manuf.
80
,
103966
(
2024
).
23.
A.
Bellini
,
S.
Guçeri
, and
M.
Bertoldi
, “
Liquefier dynamics in fused deposition
,”
J. Manuf. Sci. Eng.
126
(
2
),
237
246
(
2004
).
24.
M. P.
Serdeczny
,
R.
Comminal
,
M. T.
Mollah
,
D. B.
Pederson
, and
J.
Spangenberg
, “
Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing
,”
Addit. Manuf.
36
,
101454
(
2020
).
25.
A. A.
Mishra
,
A.
Momin
,
M.
Strano
, and
K.
Rane
, “
Implementation of viscosity and density models for improved numerical analysis of melt flow dynamics in the nozzle during extrusion-based additive manufacturing
,”
Prog. Addit. Manuf.
7
(
1
),
41
54
(
2022
).
26.
P.
Latko-Durałek
,
K.
Dydek
, and
A.
Boczkowska
, “
Thermal, rheological and mechanical properties of PETG/rPETG Blends
,”
J. Polym. Environ.
27
(
11
),
2600
2606
(
2019
).
27.
T.
Swetham
,
K. M. M.
Reddy
,
A.
Huggi
, and
M. N.
Kumar
, “
A critical review on of 3D printing materials and details of materials used in FDM
,”
Int. J. Sci. Res. Sci. Eng. Technol.
3
,
353
361
(
2017
), available at https://ijsrset.com/IJSRSET173299.
28.
R.
Krache
and
I.
Debbah
, “
Some mechanical and thermal properties of PC/ABS blends
,”
Mater. Sci. Appl.
2
(
5
),
404
410
(
2011
).
29.
C.
Bierögel
, “
Materials symbols
,” in
Polymer Solids and Polymer Melts, Polymer Solids and Polymer Melts–Mechanical and Thermomechanical Properties of Polymers
(
Springer
,
2014
), pp.
16
24
.
30.
C.
Bierögel
and
W.
Grellmann
, “
Quasi-static tensile test–tensile properties of thermoplastics-data
,” in
Polymer Solids and Polymer Melts, Polymer Solids and Polymer Melts–Mechanical and Thermomechanical Properties of Polymers
(
Springer
,
2014
), pp.
88
99
.
31.
K.
Sharma
, “
Effect of FFF process parameters on density and mechanical properties of PET-G and carbon fiber reinforced PET-G composites
,”
Master's thesis
(University of Manitoba, Canada,
2021
).
32.
B.
Robertson
,
R. L.
Thompson
,
T. C. B.
McLeish
, and
I.
Robinson
, “
Theoretical prediction and experimental measurement of isothermal extrudate swell of monodisperse and bidisperse polystyrenes
,”
J. Rheol.
61
(
5
),
931
945
(
2017
).
33.
F. J.
Galindo-Rosales
,
M. A.
Alves
, and
M. S. N.
Oliveira
, “
Microdevices for extensional rheometry of low viscosity elastic liquids: A review
,”
Microfluid. Nanofluid.
14
(
1
),
1
19
(
2013
).
34.
R.
Garritano
and
J.
Berting
, “
Polymer melt and elastomer extension fixture
,” US patent US7096728B2 (29 August
2006
).
35.
A.
Franck
, see https://tinyurl.com/55e8puhh for “
Extensional viscosity of polyolefin's and polystyrene
;” accessed 29 November
2021
.
36.
A.
Franck
, see https://tinyurl.com/2p8h4sxn for “
The ARES-EVF: Option for measuring extensional viscosity of polymer melts
;” accessed 29 November
2021
.
37.
F.
Pimenta
and
M.
Alves
, see https://github.com/fppimenta/rheoTool for “
rheoTool
” (
2016
).
38.
F.
Morrison
,
Understanding Rheology
, edited by
R. F.
Boyer
(
Oxford University Press
,
2001
).
39.
M.
Stȩpień
,
G. Y.
Choong
,
D. S. D.
Focatiis
, and
L.
Figiel
, “
Modeling non-linear rheology of PLLA: Comparison of Giesekus and Rolie-Poly constitutive models
,”
Int. J. Biobased Plast.
2
(
1
),
13
28
(
2020
).
40.
A. E.
Likhtman
and
R. S.
Graham
, “
Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-Poly equation
,”
J. Non-Newtonian Fluid Mech.
114
(
1
),
1
12
(
2003
).
41.
T.
John
,
M.
Mowbray
,
A.
Alalwyat
,
M.
Vousvoukis
,
P.
Martin
,
A.
Kowalski
, and
C.
Fonte
, “
Machine learning for viscoelastic constitutive model identification and parameterisation using large amplitude oscillatory shear
,” arXiv:2312.13793 (
2023
).
42.
T.
Schuller
, see https://github.com/T-Schuller/foamScripts for “
foamScripts
” (
2023
).
43.
M. F.
Ashby
, “
Materials selection—The basics
,” in
Materials Selection in Mechanical Design
, 4th ed., edited by
M. F.
Ashby
(
Butterworth-Heinemann
,
Oxford
,
2011
), Chap. 5, pp.
97
124
.
44.
V.
Tirtaatmadja
and
T.
Sridhar
, “
A filament stretching device for measurement of extensional viscosity
,”
J. Rheol.
37
(
6
),
1081
1102
(
1993
).
45.
S. L.
Anna
,
G. H.
McKinley
,
D. A.
Nguyen
,
T.
Sridhar
,
S. J.
Muller
,
J.
Huang
, and
D. F.
James
, “
An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids
,”
J. Rheol.
45
(
1
),
83
114
(
2001
).
46.
R. J. E.
Andrade
,
A. R.
Jacob
,
F. J.
Galindo-Rosales
,
L.
Campo-Deaño
,
Q.
Huang
,
O.
Hassager
, and
G.
Petekidis
, “
Dilatancy in dense suspensions of model hard-sphere-like colloids under shear and extensional flow
,”
J. Rheol.
64
(
5
),
1179
1196
(
2020
).
47.
A.
Bach
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Extensional viscosity for polymer melts measured in the filament stretching rheometer
,”
J. Rheol.
47
(
2
),
429
441
(
2003
).
48.
Ad Hoc Committee on Official Nomenclature and Symbols
, “
Official symbols and nomenclature of The Society of Rheology
,”
J. Rheol.
57
(
4
),
1047
1055
(
2013
).
49.
F. T.
Trouton
, “
On the coefficient of viscous traction and its relation to that of viscosity
,”
Proc. Roy. Soc. London, Ser. A
77
(
519
),
426
440
(
1906
).
50.
J.
Wisniak
, “
Frederick Thomas Trouton: The man, the rule, and the ratio
,”
Chem. Educ.
6
(
1
),
55
61
(
2001
).
51.
J. M.
Dealy
and
K. F.
Wissbrun
,
Extensional Flow Properties and Their Measurement
(
Springer
,
Dordrecht, The Netherlands
,
1999
), pp.
231
268
.
52.
C.
Gabriel
and
H.
Münstedt
, “
Strain hardening of various polyolefins in uniaxial elongational flow
,”
J. Rheol.
47
(
3
),
619
630
(
2003
).
53.
H.
Münstedt
, “
Various features of melt strain hardening of polymeric materials in uniaxial extension and their relation to molecular structure: Review of experimental results and their interpretation
,”
Rheol. Acta
62
(
7
),
333
363
(
2023
).
54.
F.
Pimenta
and
M.
Alves
, “
Stabilization of an open-source finite-volume solver for viscoelastic fluid flows
,”
J. Non-Newtonian Fluid Mech.
239
,
85
104
(
2017
).
55.
OpenCFD Ltd
, see https://www.openfoam.com/ for “
OpenFOAM®
” (
2019
).
56.
M.
Alves
,
P.
Oliveira
, and
F.
Pinho
, “
Numerical methods for viscoelastic fluid flows
,”
Annu. Rev. Fluid Mech.
53
(
1
),
509
541
(
2021
).
57.
J.
Ortega-Casanova
,
M.
Jimenez-Canet
, and
F.
Galindo-Rosales
, “
Numerical study of the heat and momentum transfer between a flat plate and an impinging jet of power law fluids
,”
Int. J. Heat Mass Transfer
141
,
102
111
(
2019
).
58.
R.
Thompson
,
P. R.
Souza Mendes
, and
M.
Naccache
, “
A new constitutive equation and its performance in contraction flows
,”
J. Non-Newtonian Fluid Mech.
86
(
3
),
375
388
(
1999
).
59.
G.
Mompean
,
R.
Thompson
, and
P.
Souza Mendes
, “
A general transformation procedure for differential viscoelastic models
,”
J. Non-Newtonian Fluid Mech.
111
(
2
),
151
174
(
2003
).
60.
A.
Fakhari
,
C.
Fernandes
, and
F. J.
Galindo-Rosales
, “
Mapping the volume transfer of graphene-based inks with the gravure printing process: Influence of rheology and printing parameters
,”
Materials
15
(
7
),
2580
(
2022
).
61.
H.-C.
Tseng
, “
The competing role of shear and extension-induced first normal stress differences within a mixed flow for a viscoelastic fluid
,”
Korea-Aust. Rheol. J.
35
,
307
(
2023
).
62.
M. A.
Alves
and
R. J.
Poole
, “
Divergent flow in contractions
,”
J. Non-Newtonian Fluid Mech.
144
(
2–3
),
140
148
(
2007
).
63.
A.
Groisman
and
V.
Steinberg
, “
Elastic turbulence in a polymer solution flow
,”
Nature
405
(
6782
),
53
55
(
2000
).
64.
R. G.
Larson
, “
Turbulence without inertia
,”
Nature
405
(
6782
),
27
28
(
2000
).
65.
S.
Peng
,
J.-y.
Li
,
Y.-l.
Xiong
,
X.-y.
Xu
, and
P.
Yu
, “
Numerical simulation of two-dimensional unsteady Giesekus flow over a circular cylinder
,”
J. Non-Newtonian Fluid Mech.
294
,
104571
(
2021
).
66.
B. P.
Heller
,
D. E.
Smith
, and
D. A.
Jack
, “
Effects of extrudate swell and nozzle geometry on fiber orientation in fused filament fabrication nozzle flow
,”
Addit. Manuf.
12
,
252
264
(
2016
).
67.
D. F.
James
and
C. A.
Roos
, “
Pressure drop of a Boger fluid in a converging channel
,”
J. Non-Newtonian Fluid Mech.
293
,
104557
(
2021
).
68.
M.
Tomé
,
M.
Araujo
,
J.
Evans
, and
S.
McKee
, “
Numerical solution of the Giesekus model for incompressible free surface flows without solvent viscosity
,”
J. Non-Newtonian Fluid Mech.
263
,
104
119
(
2019
).
69.
T.
Borrvall
and
J.
Petersson
, “
Topology optimization of fluids in Stokes flow
,”
Numer. Methods Fluids
41
(
1
),
77
107
(
2003
).
70.
J. L.
White
, “
Dynamics of viscoelastic fluids, melt fracture, and the rheology of fiber spinning
,”
J. Appl. Polym. Sci.
8
(
5
),
2339
2357
(
1964
).
You do not currently have access to this content.