This paper presents the results of experimental studies of the flow of a dilute polymer solution in a converging pipe. Three geometries with restriction rates are considered: 2.41, 3.92, and 5.65. A water–glycerin solution of 0.1% polyacrylamide was used as a working fluid. Point velocity measurements are made by using the smoke image velocimetry technique, which previously was proved by the construction of velocity profiles corresponding to the laminar viscoelastic flow in a straight pipe. The influence of the Weissenberg number and the restriction rate of the channel on the velocity profiles are established for both transverse and longitudinal directions. For small Weissenberg numbers, the experimental results are compared with the numerical results obtained using the Giesekus and exponential form of Phan-Thien–Tanner rheological models. Three flow regimes are identified: flow without vortex, vortex enhancement, and divergent flow, which is consistent with published results on the abrupt contraction and converging flows. Vortex length for a wide range of Weissenberg numbers is well predicted by a logarithm function. Modified expression of stretch rate with location of detachment plane can predict the flow regimes and the onset of unsteady flow in converging channels.

1.
D. M.
Binding
, “
An approximate analysis for contraction and converging flows
,”
J. Non-Newtonian Fluid Mech.
27
,
173
189
(
1988
).
2.
Q.
Liu
,
G.
Liu
,
Y.
Liu
,
C.
Jiang
, and
C.
Ke
, “
Numerical study of the flow of polystyrene melts in contraction flow using Rolie-Poly model
,”
Rheol. Acta
61
,
139
161
(
2022
).
3.
P.
Olley
,
T.
Gough
,
R.
Spares
, and
P. D.
Coates
, “
An experimental and simulation comparison of a 3-D abrupt contraction flow using the molecular stress function constitutive model
,”
Plast. Rubber Compos.
50
,
18
34
(
2021
).
4.
M. A.
Alves
,
P. J.
Oliveira
, and
F. T.
Pinho
, “
Numerical methods for viscoelastic fluid flows
,”
Annu. Rev. Fluid Mech.
53
,
509
541
(
2021
).
5.
D. V.
Boger
, “
Viscoelastic flows through contractions
,”
Annu. Rev. Fluid Mech.
19
,
157
182
(
1987
).
6.
S. A.
White
,
A. D.
Gotsis
, and
D. G.
Baird
, “
Review of the entry flow problem: Experimental and numerical
,”
J. Non-Newtonian Fluid Mech.
24
,
121
160
(
1987
).
7.
A. G.
Gibson
,
Rheological Measurement
, edited by
A. A.
Collyer
and
D. W.
Clegg
(
Springer
,
Dordrecht
,
1998
), pp.
455
491
.
8.
F. N.
Cogswell
, “
Converging flow of polymer melts in extrusion dies
,”
Polym. Eng. Sci.
12
,
64
73
(
1972
).
9.
J. L.
White
and
A.
Kondo
, “
Flow patterns in polyethylene and polystyrene melts during extrusion through a die entry region: Measurements and interpretation
,”
J. Non-Newtonian Fluid Mech.
3
,
41
64
(
1977
).
10.
C. Y.
Ma
,
J. L.
White
,
F. C.
Weissert
, and
K.
Min
, “
Flow patterns in carbon black filled polyethylene at the entrance to a die
,”
J. Non-Newtonian Fluid Mech.
17
,
275
287
(
1985
).
11.
F. N.
Cogswell
, “
Converging flow and stretching flow: A compilation
,”
J. Non-Newtonian Fluid Mech.
4
,
23
38
(
1978
).
12.
T. H.
Forsyth
, “
Converging flow of polymers
,”
Polym. Plast. Technol. Eng.
6
,
101
113
(
1976
).
13.
C. D.
Han
and
L. H.
Drexler
, “
Studies of converging flows of viscoelastic polymeric melts. III. Stress and velocity distributions in the entrance region of a tapered slit die
,”
J. Appl. Polym. Sci.
17
,
2369
2393
(
1973
).
14.
D. V.
Boger
and
R. J.
Binnington
, “
Experimental removal of the re-entrant corner singularity in tubular entry flows
,”
J. Rheol.
38
,
333
349
(
1994
).
15.
A. K.
Sankaran
,
D. A.
Dros
,
H. J.
Merman
,
S. J.
Picken
, and
M. T.
Kreutzer
, “
Increasing the stability of high contraction ratio flow of Boger fluids by pre-deformation
,”
J. Non-Newtonian Fluid Mech.
196
,
27
35
(
2013
).
16.
J.
Musil
and
M.
Zatloukal
, “
Historical review of secondary entry flows in polymer melt extrusion
,”
Polym. Rev.
59
,
338
390
(
2019
).
17.
A. V.
Subbotin
,
A. Y.
Malkin
, and
V. G.
Kulichikhin
, “
The elasticity of polymer melts and solutions in shear and extension flows
,”
Polymers
15
,
1051
(
2023
).
18.
Y. H.
Wen
,
C. C.
Wang
,
G. S.
Cyue
,
R. H.
Kuo
,
C. H.
Hsu
, and
R. Y.
Chang
, “
Extensional rheology of linear and branched polymer melts in fast converging flows
,”
Rheol. Acta
62
,
183
204
(
2023
).
19.
K. Y.
Pérez-Salas
,
S.
Sánchez
,
R.
Velasco-Segura
,
G.
Ascanio
,
L.
Ruiz-Huerta
, and
J. P.
Aguayo
, “
Rheological transient effects on steady-state contraction flows
,”
Rheol. Acta
62
,
171
181
(
2023
).
20.
S.
Dhawan
,
M. K.
Das
, and
P. K.
Panigrah
, “
Analysis of viscoelastic flow past a square cylinder in a channel with sudden contraction
,”
Phys. Fluids
35
,
063104
(
2023
).
21.
W.
Wang
and
L.
Wang
, “
An experimental investigation of viscoelastic flow in a contraction channel
,”
Polymers
13
,
1876
(
2021
).
22.
S. J.
Haward
,
F.
Pimenta
,
S.
Varchanis
,
D. W.
Carlson
,
K.
Toda-Peters
,
M. A.
Alves
, and
A. Q.
Shen
, “
Extensional rheometry of mobile fluids. Part I: OUBER, an optimized uniaxial and biaxial extensional rheometer
,”
J. Rheol.
67
,
995
1009
(
2023
).
23.
S. J.
Haward
,
S.
Varchanis
,
G. H.
McKinley
,
M. A.
Alves
, and
A. Q.
Shen
, “
Extensional rheometry of mobile fluids. Part II: Comparison between the uniaxial, planar and biaxial extensional rheology of dilute polymer solutions using numerically-optimized stagnation point microfluidic devices
,” arXiv: 2302.12411 (
2023
).
24.
P. A.
Gordon
,
F.
Liu
,
H. A.
Meier
,
R.
Panchadhara
, and
V.
Srivastava
, “
A material point method for simulation of viscoelastic flows
,”
Comput. Part. Mech.
6
,
311
325
(
2019
).
25.
J. E.
López-Aguilar
,
H. R.
Tamaddon-Jahromi
, and
O.
Manero
, “
Shear banding predictions for wormlike micellar systems under a contraction–expansion complex flow
,”
Phys. Fluids
35
,
063101
(
2023
).
26.
J. D.
Evans
,
I. L.
Palhares Junior
,
C. M.
Oishi
, and
F.
Ruano Neto
, “
Numerical verification of sharp corner behavior for Giesekus and Phan-Thien–Tanner fluids
,”
Phys. Fluids
34
,
113106
(
2022
).
27.
N. D.
Polychronopoulos
,
I. E.
Sarris
,
L.
Benos
, and
J.
Vlachopoulos
, “
Pressure drop in converging flows in three-dimensional printing of concrete
,”
Phys. Fluids
35
,
093104
(
2023
).
28.
D. F.
James
and
C. A. M.
Roos
, “
Pressure drop of a Boger fluid in a converging channel
,”
J. Non-Newtonian Fluid Mech.
293
,
104557
(
2021
).
29.
J.
Musil
and
M.
Zatloukal
, “
Flow-induced birefringence study of secondary flow in entrance region of rectangular slit channel for long-chain-branched polyethylene melt
,”
Phys. Fluids
34
,
013103
(
2022
).
30.
T.
Sato
,
T.
Narumi
, and
A.
Ushida
, “
Flow-induced orientation of a polymer solution in a planar channel with abrupt contraction and expansion
,”
J. Soc. Rheol. Jpn.
48
(
2
),
129
135
(
2020
).
31.
D. F.
James
and
G. M.
Chandler
, “
A converging channel rheometer for the measurement of extensional viscosity
,”
J. Non-Newtonian Fluid Mech.
35
,
421
443
(
1990
).
32.
F. J.
Galindo-Rosales
,
M. A.
Alves
, and
M. S. N.
Oliveira
, “
Microdevices for extensional rheometry of low viscosity elastic liquids: A review
,”
Microfluid. Nanofluid.
14
,
1
19
(
2013
).
33.
M. A.
Alves
,
F. T.
Pinho
, and
P. J.
Oliveira
, “
Visualizations of Boger fluid flows in a 4:1 square–square contraction
,”
AIChE J.
51
,
2908
2922
(
2005
).
34.
P. J.
Cable
and
D. V.
Boger
, “
A comprehensive experimental investigation of tubular entry flow of viscoelastic fluids: Part I. Vortex characteristics in stable flow
,”
AlChE J.
24
,
869
879
(
1978
).
35.
J. R.
Clermont
,
P. L.
Roy
, and
J. M.
Pierrard
, “
Theoretical and experimental study of a viscoelastic fluid in the converging region of a pipe
,”
J. Non-Newtonian Fluid Mech.
5
,
387
408
(
1979
).
36.
N. I.
Mikheev
and
N. S.
Dushin
, “
A method for measuring the dynamics of velocity vector fields in a turbulent flow using smoke image-visualization videos
,”
Instrum. Exp. Tech.
59
,
882
889
(
2016
).
37.
V.
Molochnikov
,
N.
Mikheev
,
A.
Paereliy
,
N.
Dushin
, and
O.
Dushina
, “
SIV measurements of flow structure in the near wake of a circular cylinder at Re = 3900
,”
Fluid Dyn. Res.
51
,
055505
(
2019
).
38.
E.
Vachagina
,
N.
Dushin
,
E.
Kutuzova
, and
A.
Kadyirov
, “
Exact solution for viscoelastic flow in pipe and experimental validation
,”
Polymers
14
,
334
(
2022
).
39.
W. L.
Wilkinson
,
Non-Newtonian Fluids. Fluid Mechanics, Mixing and Heat Transfer
(
Pergamon Press
,
London
,
1960
).
40.
S. H.
Garrioch
and
D. F.
James
, “
A finite-element study of Newtonian and power-law fluids in conical channel flow
,”
J. Fluids Eng.
119
,
341
346
(
1997
).
41.
H.
Yamaguchi
and
T.
Tanaka
, “
Viscoelastic flow in two cycle converging-diverging channel; experimental study for pressure characteristics and flow state classification
,”
Nihon Reoroji Gakkaishi
25
,
89
98
(
1997
).
42.
A.
Calina
,
M.
Wilhelmb
, and
C.
Balan
, “
Determination of the non-linear parameter (mobility factor) of the Giesekus constitutive model using LAOS procedure
,”
J. Non-Newtonian Fluid Mech.
165
,
1564
1577
(
2010
).
43.
H.
Giesekus
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
109
(
1982
).
44.
N.
Phan-Thien
and
R. I.
Tanner
, “
A new constitutive equation derived from network theory
,”
J. Non-Newtonian Fluid Mech.
2
,
353
365
(
1977
).
45.
A.
Kadyirov
,
R.
Zaripov
,
J.
Karaeva
, and
E.
Vachagina
, “
The viscoelastic swirled flow in the confusor
,”
Polymers
13
,
630
(
2021
).
46.
F.
Pimenta
and
M. A.
Alves
, “
Conjugate heat transfer in the unbounded flow of a viscoelastic fluid past a sphere
,”
Int. J. Heat Fluid Flow
89
,
108784
(
2021
).
47.
N.
Phan-Thien
, “
A nonlinear network viscoelastic model
,”
J. Rheol.
22
,
259
283
(
1978
).
48.
E. K.
Vachagina
and
A. I.
Kadyirov
, “
Parametric method for solving the problem of multimode viscoelastic fluid flow in a circular pipe
,”
Fluid Dyn.
57
(
2
),
135
145
(
2022
).
49.
I.
Daprá
and
G.
Scarpi
, “
Analytical solution for channel flow of a Giesekus fluid with non-zero solvent viscosity
,”
J. Non-Newtonian Fluid Mech.
322
,
105152
(
2023
).
50.
L. L.
Ferrás
,
M. L.
Morgado
,
M.
Rebelo
,
G. H.
McKinley
, and
A. M.
Afonso
, “
A generalised Phan–Thien—Tanner model
,”
J. Non-Newtonian Fluid Mech.
269
,
88
99
(
2019
).
51.
S. I.
Voropayev
,
S. A.
Smirnov
, and
F. Y.
Testik
, “
On the case when steady converging/diverging flow of a non-Newtonian fluid in a round cone permits an exact solution
,”
Mech. Res. Commun.
31
,
477
482
(
2004
).
52.
G. R.
Snelling
and
J. F.
Lontz
, “
Mechanism of lubricant-extrusion of teflon TFE-tetrafluoroethylene resins
,”
J. Appl. Polym. Sci.
3
,
257
265
(
1960
).
53.
A. J.
McHugh
,
D. A.
Tree
,
B.
Pornnimit
, and
G. W.
Ehrenstein
, “
Flow-induced crystallization and self-reinforcement during extrusion
,”
Int. Polym. Process.
6
,
208
211
(
1991
).
You do not currently have access to this content.