While droplets typically merge instantly in an air medium, alterations to the outer medium can complicate the coalescence process. This study investigates droplet coalescence dynamics when encapsulated by a uniform liquid–solid composite shell, aiming to understand its implications for mechanical stability and merging behavior. The uniform shell around a sessile droplet is produced by using liquid marble on oil-infused surfaces (LMOI). The coalescence dynamics was studied under two different conditions: droplet with LMOI and LMOI with LMOI. In contrast to merging of bare droplets, coalescence involving at least one LMOI reveals a three-step process, including spreading, depletion, and eventual merging phases. Higher oil viscosity influences the merging process, with increased viscosity leading to delayed merging with longer spreading and depletion phases. LMOI exhibits significant resistance to merging with another LMOI, necessitating external triggers like pressure or electric fields for coalescence. These findings provide insights into designing microreactor systems based on LMOI, contributing to the comprehension of their dynamics and functionalities.

1.
Z.
Zhao
,
X.
Yao
,
W.
Zhao
,
B.
Shi
,
S.
Sridhar
,
Y.
Pu
,
S.
Pramana
,
D.
Wang
, and
S.
Wang
, “
Highly transparent liquid marble in liquid (HT-LMIL) as 3D miniaturized reactor for real-time bio-/chemical assays
,”
Chem. Eng. J.
443
,
136417
(
2022
).
2.
B. S.
Lekshmi
,
S. N.
Varanakkottu
, and
S. N.
Varanakkottu
, “
Janus liquid marbles: Fabrication techniques, recent developments, and applications
,”
Droplet
2
,
e44
(
2023
).
3.
J.
Saczek
,
X.
Yao
,
V.
Zivkovic
,
M.
Mamlouk
,
D.
Wang
,
S. S.
Pramana
, and
S.
Wang
, “
Long-lived liquid marbles for green applications
,”
Adv. Funct. Mater.
31
,
2011198
(
2021
).
4.
R.
Lathia
,
S.
Nagpal
,
C. D.
Modak
,
S.
Mishra
,
D.
Sharma
,
B. S.
Reddy
,
P.
Nukala
,
R.
Bhat
,
P.
Sen
,
C. M. S.
Dey Modak
,
S.
Deepak
,
S. R. B. N.
Pavan
,
B.
Ramray
, and
P.
Sen
, “
Tunable encapsulation of sessile droplets with solid and liquid shells
,”
Nat. Commun.
14
(
1
),
6445
(
2023
).
5.
R.
Lathia
,
B. S.
Reddy
,
C.
Dey Modak
,
S.
Nagpal
, and
P.
Sen
, “
Temperature-responsive microcapsules manufactured by promoting controlled cloaking with the help of micro/nanoparticles
,” in
IEEE 36th International Conference Micro Electro Mechanical Systems
(
IEEE
,
2023
), p.
1088
.
6.
J. D.
Paulsen
,
R.
Carmigniani
,
A.
Kannan
,
J. C.
Burton
, and
S. R.
Nagel
, “
Coalescence of bubbles and drops in an outer fluid
,”
Nat. Commun.
5
(
1
),
3182
(
2014
).
7.
H.
Xu
,
T.
Wang
, and
Z.
Che
, “
Bridge evolution during the coalescence of immiscible droplets
,”
J. Colloid Interface Sci.
628
,
869
(
2022
).
8.
R.
Shimizu
and
H.
Tanaka
, “
A novel coarsening mechanism of droplets in immiscible fluid mixtures
,”
Nat. Commun.
6
(
1
),
7407
(
2015
).
9.
R.
Lathia
,
K. N.
Nampoothiri
,
N.
Sagar
,
S.
Bansal
,
C. D.
Modak
, and
P.
Sen
, “
Advances in microscale droplet generation and manipulation
,”
Langmuir
39
,
2461
(
2023
).
10.
M. L.
Taboada
,
D.
Chutani
,
H. P.
Karbstein
, and
V.
Gaukel
, “
Breakup and coalescence of oil droplets in protein-stabilized emulsions during the atomization and the drying step of a spray drying process
,”
Food Bioprocess Technol.
14
,
854
(
2021
).
11.
E. G.
Bowen
, “
The fomation of rain by coalescence
,”
Aust. J. Sci. Res.
3
,
193
(
1950
).
12.
H.
Deka
,
G.
Biswas
,
S.
Chakraborty
, and
A.
Dalal
, “
Coalescence dynamics of unequal sized drops
,”
Phys. Fluids
31
,
012105
(
2019
).
13.
N.
Behera
and
S.
Chakraborty
, “
Electric-field-mediated morpho-dynamic evolution in drop–drop coalescence phenomena in the inertio-capillary regime
,”
J. Fluid Mech.
956
,
A22
(
2023
).
14.
S.
Bansal
and
P.
Sen
, “
Effect of electrowetting induced capillary oscillations on coalescence of compound droplets
,”
J. Colloid Interface Sci.
530
,
223
(
2018
).
15.
R.
Lathia
,
N.
Sagar
, and
P.
Sen
, “
Multi-droplets non-coalescence on open-chip electrowetting platform
,”
Eur. Phys. J. Spec. Top.
232
,
859
(
2022
).
16.
H.
Xu
,
Y.
Zhou
,
D.
Daniel
,
J.
Herzog
,
X.
Wang
,
V.
Sick
, and
S.
Adera
, “
Droplet attraction and coalescence mechanism on textured oil-impregnated surfaces
,”
Nat. Commun.
14
,
4901
(
2023
).
17.
A. A.
Günay
,
S.
Sett
,
Q.
Ge
,
T. J.
Zhang
, and
N.
Miljkovic
, “
Cloaking dynamics on lubricant‐infused surfaces
,”
Adv. Mater. Interfaces
7
,
2000983
(
2020
).
18.
S.
Bansal
and
P.
Sen
, “
Axisymmetric and nonaxisymmetric oscillations of sessile compound droplets in an open digital microfluidic platform
,”
Langmuir
33
,
11047
(
2017
).
19.
A. D.
Scheludko
and
D.
Nikolov
, “
Measurement of surface tension by pulling a sphere from a liquid
,”
Colloid Polym. Sci.
253
,
396
(
1975
).
20.
S. E.
Anachkov
,
I.
Lesov
,
M.
Zanini
,
P. A.
Kralchevsky
,
N. D.
Denkov
, and
L.
Isa
, “
Particle detachment from fluid interfaces: Theory vs. experiments
,”
Soft Matter
12
,
7632
(
2016
).
21.
L.
Duchemin
,
J.
Eggers
, and
C.
Josserand
, “
Inviscid coalescence of drops
,”
J. Fluid Mech.
487
,
167
(
2003
).
22.
R.
Lathia
,
C.
Dey Modak
, and
P.
Sen
, “
Suppression of droplet pinch-off by early onset of interfacial instability
,”
J. Colloid Interface Sci.
646
,
606
(
2023
).
23.
J. B.
Boreyko
,
G.
Polizos
,
P. G.
Datskos
,
S. A.
Sarles
, and
C. P.
Collier
, “
Air-stable droplet interface bilayers on oil-infused surfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
7588
(
2014
).
24.
D. G. A. L.
Aarts
,
H. N. W.
Lekkerkerker
,
H.
Guo
,
G. H.
Wegdam
, and
D.
Bonn
, “
Hydrodynamics of droplet coalescence
,”
Phys. Rev. Lett.
95
,
164503
(
2005
).

Supplementary Material

You do not currently have access to this content.