The biological leaflet valve is a structure found in blood vessels and the cardiac system, designed to maintain a unidirectional flow within the vessels. Two filaments inspired by the biological leaflet are installed inside the channel, and behavior of two filaments is explored by using immersed boundary method. It is observed that the filaments serve as a valve, maintaining the unidirectional flow inside the channel depending on the length ( L ) and the initial inclined angle ( θ ) of the filaments. The behavior of the filaments is classified into three modes based on the flow characteristics around the filaments. The pressure and vorticity fields in the vicinity of the filaments are examined to investigate the influence of the surrounding flow on the behavior of filaments. The present study reveals the time sensitivity of valve response, the power consumption, and hydrodynamic efficiency ( η V , steady) of the filament valve, noting that the response speed of the filament valve can vary up to 2.5 times depending on L and θ. The dynamic behavior of the filament valve is analyzed with respect to changes in the properties of the filaments, observing a monotonic decrease in hydrodynamic efficiency with an increase in the bending rigidity ( γ ) of the filaments. As a result, the present study will be employed as a cornerstone in the development of a mechanical system that emulate biological structures through biomimetics.

1.
Asghar
,
Z.
,
Khan
,
M. W. S.
,
Gondal
,
M. A.
, and
Ghaffari
,
A.
, “
Magnetohydrodynamic flow of Carreau Yasuda fluid inside a complex wavy passage formed by beating cilia: A finite-difference analysis
,”
Proc. Inst. Mech. Eng., Part E
(published online
2023a
).
2.
Asghar
,
Z.
,
Khan
,
M. W. S.
,
Pasha
,
A. A.
,
Rahman
,
M. M.
,
Sankaralingam
,
L.
, and
Alam
,
M. I.
, “
On non-Newtonian fluid flow generated via complex metachronal waves of cilia with magnetic, hall, and porous effects
,”
Phys. Fluids
35
,
093601
(
2023b
).
3.
Borazjani
,
I.
, “
Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves
,”
Comput. Methods Appl. Mech. Eng.
257
,
103
116
(
2013
).
4.
Calandrini
,
S.
and
Aulisa
,
E.
, “
Fluid-structure interaction simulations of venous valve: A monolithic ALE method for large structural displacements
,”
Int. J. Numer. Methods Biomed. Eng.
35
(
2
),
e3156
(
2019
).
5.
Choi
,
Y. J.
,
Vedula
,
V.
, and
Mittal
,
R.
, “
Computational study of the dynamics of a bileaflet mechanical heart valve in the mitral position
,”
Ann. Biomed. Eng.
42
,
1668
1680
(
2014
).
6.
Daniel
,
T. L.
and
Combes
,
S. A.
, “
Flexible wings and fins: Bending by inertial or fluid-dynamic forces?
,”
Integr. Comp. Biol.
42
,
1044
1049
(
2002
).
7.
Eloy
,
C.
,
Souilliez
,
C.
, and
Schouveiler
,
L.
, “
Flutter of a rectangular plate
,”
J. Fluids Struct.
23
,
904
919
(
2007
).
8.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
, “
Modeling a no-slip flow boundary with an external force field
,”
J. Comput. Phys.
105
,
354
366
(
1993
).
9.
Hajati
,
Z.
,
Moghanlou
,
F. S.
,
Vajdi
,
M.
,
Razavi
,
S. E.
, and
Matin
,
S.
, “
Fluid-structure interaction of blood flow around a vein valve
,”
Bioimpacts
10
(
3
),
169
175
(
2020
).
10.
Huang
,
W.-X.
,
Shin
,
S. J.
, and
Sung
,
H. J.
, “
Simulation of flexible filaments in a uniform flow by the immersed boundary method
,”
J. Comput. Phys.
226
,
2206
2228
(
2007
).
11.
Huang
,
W.-X.
, and
Sung
,
H. J.
, “
An immersed boundary method for fluid-flexible structure interaction
,”
Comput. Methods Appl. Mech. Eng.
198
,
2650
2661
(
2009
).
12.
Khan
,
M. W. S.
, and
Ali
,
N.
, “
Theoretical analysis of thermal entrance problem for blood flow: An extension of classical Graetz problem for Casson fluid model using generalized orthogonality relations
,”
Int. Commun. Heat Mass Transfer.
109
,
104314
(
2019
).
13.
Khan
,
M. W. S.
,
Ali
,
N.
, and
Bég
,
O. A.
, “
Thermal entrance problem for blood flow inside an axisymmetric tube: The classical Graetz problem extended for Quemanda's bio-rheological fluid with axial conduction
,”
Proc. Inst. Mech. Eng. H
236
(
6
),
848
859
(
2022
).
14.
Khan
,
M. W. S.
,
Asghar
,
Z.
,
Ali
,
N.
, and
Shatanawi
,
W.
, “
Thermal entry problem for Vócadlo fluid model bounded within passive tube and channel with axial conduction and viscous dissipation: A Graetz-Nusselt problem
,”
Chin. J. Phys.
81
,
219
232
(
2023a
).
15.
Khan
,
M. W. S.
,
Asghar
,
Z.
, and
Hafeez
,
A.
, “
Graetz problem for the Casson fluid model with prescribed heat flux in a circular duct
,”
Eur. Phys. J. Spec. Top.
(published online
2023b
).
16.
Kim
,
K.
,
Baek
,
S.-J.
, and
Sung
,
H. J.
, “
An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations
,”
Numer. Methods Fluids
38
,
125
138
(
2002
).
17.
Kim
,
Y.
and
Peskin
,
C. S.
, “
Penalty immersed boundary method for an elastic boundary with mass
,”
Phys. Fluids
19
,
053103
(
2007
).
18.
Kunzelman
,
K. S.
,
Einstein
,
D. R.
, and
Cochran
,
R. P.
Fluid-structure interaction models of the mitral valve: Function in normal and pathological states
,”
Philos. Trans. R. Soc. B.
362
,
1393
1406
(
2007
).
19.
Lantz
,
J.
,
Bäck
,
S.
,
Carlhäll
,
C.-J.
,
Bolger
,
A.
,
Persson
,
A.
,
Karlsson
,
M.
, and
Ebbers
,
T.
, “
Impact of prosthetic mitral valve orientation of the ventricular flow field: Comparison using patient-specific computational fluid dynamics
,”
J. Biomech.
116
,
110209
(
2021
).
20.
Le
,
T. B.
and
Sotiropoulos
,
F.
, “
Fluid-structure interaction of an aortic valve prosthesis driven by an animated left ventricle
,”
J. Comput. Phys.
244
,
41
62
(
2013
).
21.
Lee
,
J. B.
,
Park
,
S. G.
, and
Sung
,
H. J.
, “
Heat transfer enhancement by asymmetrically clamped flexible flags in a channel flow
,”
Int. J. Heat Mass Transfer
116
,
1003
1015
(
2018
).
22.
Park
,
S. G.
and
Sung
,
H. J.
, “
Hydrodynamics of flexible fins propelled in tandem, diagonal, triangular and diamond configurations
,”
J. Fluid Mech.
840
,
154
189
(
2018
).
23.
Peskin
,
C. S.
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
24.
Pierrakos
,
O.
and
Vlachos
,
P. P.
, “
The effect of vortex formation on left ventricular filling and mitral valve efficiency
,”
J. Biomech. Eng.
128
,
527
539
(
2006
).
25.
Querzoli
,
G.
,
Fortini
,
S.
, and
Cenedese
,
A.
, “
Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow
,”
Phys. Fluids
22
,
041901
(
2010
).
26.
Ryu
,
J.
and
Sung
,
H. J.
, “
Intermittent locomotion of a self-propelled plate
,”
Phys. Fluids
31
,
111902
(
2019
).
27.
Shin
,
S. J.
,
Huang
,
W.-X.
, and
Sung
,
H. J.
, “
Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method
,”
Int. J. Numer. Methods Fluids
58
,
263
286
(
2008
).
28.
Sotiropoulos
,
F.
,
Le
,
T. B.
, and
Gilmanov
,
A.
, “
Fluid mechanics of heart valves and their replacements
,”
Annu. Rev. Fluid Mech.
48
,
259
283
(
2016
).
29.
Su
,
B.
,
Wang
,
X.
,
Kabinejadian
,
F.
,
Chin
,
C.
,
Le
,
T. T.
, and
Zhang
,
J.-M.
, “
Effect of left atrium on intraventricular flow in numerical simulation
,”
Comput. Biol. Med.
106
,
46
53
(
2019
).
30.
Wang
,
J. S.
,
Gau
,
Q.
,
Wei
,
R. J.
, and
Wang
,
J. J.
, “
Experimental study on the effect of an artificial cardiac valve on left ventricular flow
,”
Exp. Fluids
58
,
126
(
2017
).
31.
Wang
,
S.
,
Ryu
,
J.
,
Yang
,
J.
,
Chen
,
Y.
,
He
,
G.-Q.
, and
Sung
,
H. J.
, “
Vertically clamped flexible flags in a Poiseuille flow
,”
Phys. Fluids
32
,
031902
(
2020
).
32.
Watton
,
P. N.
,
Luo
,
X. Y.
,
Yin
,
M.
,
Bernacca
,
G. M.
, and
Wheatley
,
D. J.
, “
Effect of ventricle motion on the dynamic behavior of chorded mitral valves
,”
J. Fluids Struct.
24
,
58
74
(
2008
).
33.
Yang
,
J.
,
Chen
,
Y.
,
Zhang
,
J.-D.
,
Huang
,
W.-X.
, and
Sung
,
H. J.
, “
A self-propelled flexible plate with a keel-like structure
,”
Phys. Fluids
33
,
031902
(
2021
).
34.
Yeh
,
P. D.
, and
Alexeev
,
A.
, “
Free swimming of an elastic plate plunging at low Reynolds number
,”
Phys. Fluids
26
,
053604
(
2014
).
35.
Zhang
,
K.
,
Jeronimo
,
M. D.
, and
Rival
,
D. E.
, “
Lagrangian method to simultaneously characterize transport behavior of liquid and solid phases: A feasibility study in a confined vortex ring
,”
Exp. Fluids
60
,
160
(
2019
).
36.
Zhang
,
K.
and
Rival
,
D. E.
, “
On the dynamics of unconfined and confined vortex rings in dense suspensions
,”
J. Fluid Mech.
902
,
A6
(
2020
).
You do not currently have access to this content.