Droplet manipulation on a substrate by electrical signals is instrumental to the automation and miniaturization of labor-intensive assays in life science and chemistry. Current techniques are primarily based on either electrowetting or a more recent ionic-surfactant-mediated electro-dewetting effect. Here, we report that the two effects can occur simultaneously on the same substrate. Using a dope silicon substrate and an aqueous droplet with a cationic surfactant, the surface exhibits dewetting at positive biases and wetting at negative. Such a polarity-dependent wetting–dewetting transition enables a more significant wettability change (>60° contact angle change between ±3 V), which preserves after multiple wetting–dewetting cycles. We also find that the transition does not experience contact angle hysteresis that sole electrowetting commonly suffers from. Benefitting from these features, we experimentally show that droplet manipulation on a digital microfluidic device is more efficient and robust using this joint mechanism.

1.
M.
Hosokawa
,
Y.
Nishikawa
,
M.
Kogawa
, and
H.
Takeyama
, “
Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics
,”
Sci. Rep.
7
,
5199
(
2017
).
2.
M. H.
Shamsi
,
K.
Choi
,
A. H.
Ng
, and
A. R.
Wheeler
, “
A digital microfluidic electrochemical immunoassay
,”
Lab Chip
14
,
547
554
(
2014
).
3.
B. S.
Gallardo
et al, “
Electrochemical principles for active control of liquids on submillimeter scales
,”
Science
283
,
57
60
(
1999
).
4.
A. R. C.
Wheeler
, “
Putting electrowetting to work
,”
Science
322
,
539
540
(
2008
).
5.
M. G.
Pollack
,
R. B.
Fair
, and
A. D.
Shenderov
, “
Electrowetting-based actuation of liquid droplets for microfluidic applications
,”
Appl. Phys. Lett.
77
,
1725
1726
(
2000
).
6.
B.
Berge
, “
Electrocapillarity and wetting of insulator films by water
,”
C. R. Acad. Sci. Ser. II
317
,
157
163
(
1993
).
7.
J.
Lee
,
H.
Moon
,
J.
Fowler
,
T.
Schoellhammer
, and
C. J.
Kim
, “
Electrowetting and electrowetting-on-dielectric for microscale liquid handling
,”
Sensor Actuat. A
95
,
259
268
(
2002
).
8.
R. B.
Fair
, “
Digital microfluidics: Is a true lab-on-a-chip possible?
,”
Microfluid. Nanofluid.
3
,
245
281
(
2007
).
9.
S. Y.
Teh
,
R.
Lin
,
L. H.
Hung
, and
A. P.
Lee
, “
Droplet microfluidics
,”
Lab Chip
8
,
198
220
(
2008
).
10.
S. K.
Cho
,
H. J.
Moon
, and
C. J.
Kim
, “
Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits
,”
J. Microelectromech. Syst.
12
,
70
80
(
2003
).
11.
G.
Lippmann
, “
Relations entre les ph´enom`enes ´electriques et capillaires
,”
Ann. Chim. Phys.
5
,
494
(
1875
).
12.
C. W.
Monroe
,
L. I.
Daikhin
,
M.
Urbakh
, and
A. A.
Kornyshev
, “
Electrowetting with electrolytes
,”
Phys. Rev. Lett.
97
,
136102
(
2006
).
13.
A.
Quinn
,
R.
Sedev
, and
J.
Ralston
, “
Contact angle saturation in electrowetting
,”
J. Phys. Chem. B
109
,
6268
6275
(
2005
).
14.
B.
Raj
,
M.
Dhindsa
,
N. R.
Smith
,
R.
Laughlin
, and
J.
Heikenfeld
, “
Ion and liquid dependent dielectric failure in electrowetting systems
,”
Langmuir
25
,
12387
12392
(
2009
).
15.
F.
Mugele
,
A.
Klingner
,
J.
Buehrle
,
D.
Steinhauser
, and
S.
Herminghaus
, “
Electrowetting: A convenient way to switchable wettability patterns
,”
J. Phys: Condens. Matter
17
,
S559
S576
(
2005
).
16.
A.
Quinn
,
R.
Sedev
, and
J.
Ralston
, “
Influence of the electrical double layer in electrowetting
,”
J. Phys. Chem. B
107
,
1163
1169
(
2003
).
17.
H. J. J.
Verheijen
and
M. W. J.
Prins
, “
Reversible electrowetting and trapping of charge: Model and experiments
,”
Langmuir
15
,
6616
6620
(
1999
).
18.
F.
Mugele
, “
Fundamental challenges in electrowetting: From equilibrium shapes to contact angle saturation and drop dynamics
,”
Soft Matter
5
,
3377
(
2009
).
19.
J.
Li
,
N. S.
Ha
,
T.
Liu
,
R. M.
van Dam
, and
C. J.
Kim
, “
Ionic-surfactant-mediated electro-dewetting for digital microfluidics
,”
Nature
572
,
507
510
(
2019
).
20.
F.
Li
and
F.
Mugele
, “
How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage
,”
Appl. Phys. Lett.
92
,
244108
(
2008
).
21.
T. F.
Tadros
and
J.
Lyklema
, “
Adsorption of potential-determining ions at the silica-aqueous electrolyte interface and the role of some cations
,”
J. Electroanal. Chem. Interf. Electrochem.
17
,
267
275
(
1968
).
22.
J.
Antonio Alves Júnior
and
J.
Baptista Baldo
, “
The behavior of zeta potential of silica suspensions
,”
New J. Glass Ceram.
4
,
29
37
(
2014
).
23.
T. P.
Goloub
,
L. K.
Koopal
,
B. H.
Bijsterbosch
, and
M. P.
Sidorova
, “
Adsorption of cationic surfactants on silica. Surface charge effects
,”
Langmuir
12
,
3188
3194
(
1996
).
24.
A. A.
Kornyshev
et al, “
Ultra-low-voltage electrowetting
,”
J. Phys. Chem. C
114
,
14885
14890
(
2010
).
25.
D. J.
Lomax
et al, “
Ultra-low voltage electrowetting using graphite surfaces
,”
Soft Matter
12
,
8798
8804
(
2016
).
26.
B.
Janocha
,
H.
Bauser
,
C.
Oehr
,
H.
Brunner
, and
W.
Göpel
, “
Competitive electrowetting of polymer surfaces by water and decane
,”
Langmuir
16
,
3349
3354
(
2000
).
27.
G. V.
Kuznetsov
, et al “
Evaporation modes of LiBr, CaCl2, LiCl, NaCl aqueous salt solution droplets on aluminum surface
,”
Int. J. Heat Mass Transfer
126
,
161
168
(
2018
).
28.
J.
Aguiar
,
P.
Carpena
,
J. A.
Molina-Bolivar
, and
C. C.
Ruiz
, “
On the determination of the critical micelle concentration by the pyrene 1: 3 ratio method
,”
J Colloid Interf. Sci.
258
,
116
122
(
2003
).

Supplementary Material

You do not currently have access to this content.