Pelton turbines are widely used in hydropower stations located in mountainous regions, especially with water head drop of more than 2000 m. Due to the complex structure and working principle of the turbine, the flow is more complicated than reaction turbines, making the numerical simulation more difficult. The impulse action causes the occurrence of erosion phenomena in Pelton turbines, which will directly decrease the hydraulic efficiency and reduce the turbine's life. For investigating the erosion characteristics, computational fluid dynamics is widely used on variegated platforms according to their unique advantage. Thus, different platforms are introduced and compared in solving the multi-phase flow using a discrete element method or the other meshless methods. In addition, the erosion mechanism is studied and classified in different aspects such as impact angle and impact velocity. However, unlike the feasibility of numerical simulations, experimental work on the erosion mechanism is still challenging to reproduce. Furthermore, the state of experimental research is discussed by listing the various major facilities in operation and comparing their methods of experimental analysis. Case studies all over the world provide a very rich database of erosion patterns which would be highly useful in validation and verification of simulation and experimental results. Studies have shown that particle parameters, such as size, concentration, shape, velocity, and the interaction between particles and material surfaces, significantly impact the erosion of Pelton turbines. In response to this erosion, upgrading materials and implementing geometric optimization have proven to be effective strategies.

1.
CNE Administration
, see http://www.nea.gov.cn/2021-04/09/c_139869431.htm for “
Energy structure transformation.
2.
IRE Agency
, see https://irena.org/hydropower for “
Installed capacity trends
.”
3.
P. P.
Gohil
and
R. P.
Saini
, “
Coalesced effect of cavitation and silt erosion in hydro turbines—A review
,”
Renewable Sustainable Energy Rev.
33
,
280
289
(
2014
).
4.
A. W.
Wood
and
G.
Sreckovic
, “
The sustainability of pacific northwest hydropower generation in the context of nonstationarity and renewable energy growth
,”
Clim. Vulnerability
5
,
177
194
(
2013
).
5.
A.
Židonis
and
G. A.
Aggidis
, “
State of the art in numerical modelling of Pelton turbines
,”
Renewable Sustainable Energy Rev.
45
,
135
144
(
2015
).
6.
S.
Alimirzazadeh
,
T.
Kumashiro
,
S.
Leguizamón
,
E.
Jahanbakhsh
,
A.
Maertens
,
C.
Vessaz
,
K.
Tani
, and
F.
Avellan
, “
GPU-accelerated numerical analysis of jet interference in a six-jet Pelton turbine using Finite volume particle method
,”
Renewable Energy
148
,
234
246
(
2020
).
7.
K.
Kaygusuz
, “
Renewable energy: Power for a sustainable future
,”
Energy Explor. Exploit.
19
,
603
626
(
2001
).
8.
G.
Tiwari
,
J.
Kumar
,
V.
Prasad
, and
V. K.
Patel
, “
Utility of CFD in the design and performance analysis of hydraulic turbines A review
,”
Energy Rep.
6
,
2410
2429
(
2020
).
9.
H. J.
Choi
,
M. A.
Zullah
,
H. W.
Roh
,
P. S.
Ha
,
S. Y.
Oh
, and
Y. H.
Lee
, “
CFD validation of performance improvement of a 500 kW Francis turbine
,”
Renewable Energy
54
,
111
123
(
2013
).
10.
P.
Zhao
,
Y.
Lai
,
W.
Xu
,
S.
Zhang
,
P.
Wang
, and
J.
Wang
, “
Performance investigation of a novel near-isothermal compressed air energy storage system with stable power output
,”
Int. J. Energy Res.
44
,
11135
11151
(
2020
).
11.
F. A.
Ishola
,
J.
Azeta
,
G.
Agbi
,
O. O.
Olatunji
, and
F.
Oyawale
, “
Simulation for material selection for a pico Pelton turbine's wheel and buckets
,”
Procedia Manuf.
35
,
1172
1177
(
2019
).
12.
A. M.
Haidar
,
M. F.
Senan
,
A.
Noman
, and
T.
Radman
, “
Utilization of pico hydro generation in domestic and commercial loads
,”
Renewable Sustainable Energy Rev.
16
,
518
524
(
2012
).
13.
J.
Decaix
,
D.
Biner
,
J.-L.
Drommi
,
F.
Avellan
, and
C.
Münch-alligné
, “
CFD simulations of a Y-junction for the implementation of hydraulic short-circuit operating mode
,”
IOP Conf. Ser.
774
,
012013
(
2021
).
14.
J.
Decaix
,
A.
Gaspoz
,
V.
Hasmatuchi
,
M.
Dreyer
,
C.
Nicolet
,
S.
Crettenand
, and
C.
Münch-Alligné
, “
Dénoyer une galerie en charge pour améliorer la flexibilité d'une centrale hydroélectrique
,”
LHB
108
,
2046980
(
2022
).
15.
J.
L'Abée-Lund
and
J.
Otero
, “
Hydropeaking in small hydropower in Norway-compliance with license conditions?
River Res. Appl.
34
,
372
381
(
2018
).
16.
S.
Islam
,
I.
Dincer
, and
B. S.
Yilbas
, “
Development of a novel solar-based integrated system for desalination with heat recovery
,”
Appl. Therm. Eng.
129
,
1618
1633
(
2018
).
17.
M. H.
Vasconcelos
,
P.
Beires
,
C. L.
Moreira
, and
J. A.
Peças Lopes
, “
Dynamic security of islanded power systems with pumped storage power plants for high renewable integration—A study case
,”
J. Eng.
2019
,
4955
4960
.
18.
H.
Grein
and
A.
Schachenmann
, “
Solving problems of abrasion in hydroelectric machinery
,”
Int. Water Power Dam Construct.
44
,
19
24
(
1992
).
19.
M. K.
Padhy
and
R. P.
Saini
, “
A review on silt erosion in hydro turbines
,”
Renewable Sustainable Energy Rev.
12
,
1974
1987
(
2008
).
20.
K. R.
Rakeshasharma
,
M. K.
Padhy
,
A.
Hota
, and
S. K.
Sarangi
, “
A literature survey on silt erosion and cavitation in hydro turbine
,” in
2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES)
, Paralakhemundi, India (
2016
), pp.
1771
1776
.
21.
B.
Mann
, “
High-energy particle impact wear resistance of hard coatings and their application in hydroturbines
,”
Wear
237
,
140
146
(
2000
).
22.
U.
Shrestha
,
Z.
Chen
, and
Y. D.
Choi
, “
Correlation of the sediment properties and erosion in Francis hydro turbine runner
,”
Int. J. Fluid Mach. Syst.
12
,
109
118
(
2019
).
23.
H.
Zhao
,
B.
Xu
,
P.
Tang
,
N.
Guo
, and
B.
Zhu
, “
Generation mechanism and control method of countertorque in the bucket of a Pelton turbine
,”
Phys. Fluids
35
,
105133
(
2023
).
24.
I.
Finnie
, “
Erosion of surfaces
,”
Wear
3
,
87
103
(
1960
).
25.
J.
Bitter
, “
A study of erosion phenomena Part I
,”
Wear
6
,
5
21
(
1963
).
26.
F.
Khan
and
A.
Kumar
, “
Pelton turbine jet flow investigations using laser Doppler velocimetry
,”
Phys. Fluids
35
,
125138
(
2023
).
27.
J.
Bitter
, “
A study of erosion phenomena: Part II
,”
Wear
6
,
169
190
(
1963
).
28.
J. H.
Neilson
and
A.
Gilchrist
, “
Erosion by a stream of solid particles
,”
Wear
11
,
111
122
(
1968
).
29.
R.
Chattopadhyay
, “
High silt wear of hydroturbine runners
,”
Wear
162–164
,
1040
1044
(
1993
).
30.
B.
Gandhi
,
S.
Singh
, and
V.
Seshadri
, “
Study of the parametric dependence of erosion wear for the parallel flow of solid-liquid mixtures
,”
Tribol. Int.
32
,
275
282
(
1999
).
31.
A.
Elkholy
, “
Prediction of abrasion wear for slurry pump materials
,”
Wear
84
,
39
49
(
1983
).
32.
T.
Nozaki
and
T.
Takayanagi
, “
Estimation of repair cycle of turbine due to abrasion caused by suspended sand and determination of capacity and cross section of desilting basin
,”
Dengen Kaihatsu K.K., Chosa Shiryo (Japan)
81
,
68
98
(
1987
), see https://www.osti.gov/etdeweb/biblio/5691002
33.
T.
Bajracharya
,
B.
Acharya
,
C.
Joshi
,
R.
Saini
, and
O.
Dahlhaug
, “
Sand erosion of Pelton turbine nozzles and buckets: A case study of Chilime hydropower plant
,”
Wear
264
,
177
184
(
2008
).
34.
X.
Liu
,
Y. Y.
Luo
, and
Z. W.
Wang
, “
A review on fatigue damage mechanism in hydro turbines
,”
Renewable Sustainable Energy Rev.
54
,
1
14
(
2016
).
35.
X. F.
Ge
,
J.
Sun
, and
J. G.
Cai
, “
Study of the erosion influence on bucket profile and performance of Pelton turbine
,”
Proc. CSEE
41
,
7391
7402
(
2021
).
36.
A. M.
Morales B
,
I. F.
Pachón
,
J.
Loboguerrero U
,
J. A.
Medina
, and
J. A.
Escobar G
, “
Development of a test rig to evaluate abrasive wear on Pelton turbine nozzles. A case study of Chivor Hydropower
,”
Wear
372–373
,
208
215
(
2017
).
37.
L.
Han
,
X.-L.
Duan
,
R.-Z.
Gong
,
G.-F.
Zhang
,
H.-J.
Wang
, and
X.-Z.
Wei
, “
Physic of secondary flow phenomenon in distributor and bifurcation pipe of Pelton turbine
,”
Renewable Energy
131
,
159
167
(
2019
).
38.
Z.
Zhang
and
M.
Casey
, “
Experimental studies of the jet of a Pelton turbine
,”
Proc. Inst. Mech. Eng., Part A
221
,
1181
1192
(
2007
).
39.
D.
Jošt
,
P.
Mežnar
, and
A.
Lipej
, “
Numerical prediction of Pelton turbine efficiency
,”
IOP Conf. Ser.
12
,
012080
(
2010
).
40.
T.
Staubli
,
A.
Abgottspon
,
P.
Weibel
,
C.
Bissel
,
E.
Parkinson
,
J.
Leduc
, and
F.
Leboeuf
, “
Jet quality and Pelton efficiency
,” Proceeding of Hydro-2009, Lyon, France (
2009
).
41.
L.
Han
,
G. F.
Zhang
,
Y.
Wang
, and
X. Z.
Wei
, “
Investigation of erosion influence in distribution system and nozzle structure of Pelton turbine
,”
Renewable Energy
178
,
1119
1128
(
2021
).
42.
T. R.
Bajracharya
,
R.
Shrestha
, and
A. B.
Timilsina
, “
Solid particle erosion models and their application to predict wear in Pelton turbine injector
,”
J. Inst. Eng.
15
,
349
359
(
2020
).
43.
C.
Zeng
,
Y.
Xiao
,
W.
Zhu
,
Y.
Yao
,
L.
Cao
, and
Z.
Wang
, “
Pelton turbine needle erosion prediction based on 3D three- phase flow simulation
,”
IOP Conf. Ser.
22
,
052019
(
2014
).
44.
J.
Liu
,
J.
Yu
, and
C.
Jiang
, “
Evaluation on sediment erosion of Pelton turbine flow passage component
,”
IOP Conf. Ser.
240
,
022027
(
2019
).
45.
S.
Bhattarai
,
P.
Vichare
,
K.
Dahal
,
A.
Al Makky
, and
A.
Olabi
, “
Novel trends in modelling techniques of Pelton turbine bucket for increased renewable energy production
,”
Renewable Sustainable Energy Rev.
112
,
87
101
(
2019
).
46.
C.
Vessaz
,
L.
Andolfatto
,
F.
Avellan
, and
C.
Tournier
, “
Toward design optimization of a Pelton turbine runner
,”
Struct. Multidisc. Optim.
55
,
37
51
(
2017
).
47.
S.
Leguizamón
,
E.
Jahanbakhsh
,
A.
Maertens
,
S.
Alimirzazadeh
, and
F.
Avellan
, “
Simulation of the hydroabrasive erosion of a bucket: A multiscale model with projective integration to circumvent the spatio-temporal scale separation
,”
IOP Conf. Ser.
240
,
072014
(
2019
).
48.
S.
Leguizamón
,
E.
Jahanbakhsh
,
A.
Maertens
,
S.
Alimirzazadeh
, and
F.
Avellan
, “
A multiscale model for sediment impact erosion simulation using the finite volume particle method
,”
Wear
392–393
,
202
212
(
2017
).
49.
B. W.
Solemslie
and
O. G.
Dahlhaug
, “
A reference Pelton turbine-three-dimensional flow front tracking within a rotating Pelton bucket
,”
J. Fluids Eng.
140
,
121104
(
2018
).
50.
D.
Felix
,
A.
Abgottspon
,
I.
Albayrak
, and
R. M.
Boes
, “
Hydro-abrasive erosion on coated Pelton runners: Partial calibration of the IEC model based on measurements in HPP Fieschertal
,”
IOP Conf. Ser.
49
,
122009
(
2016
).
51.
H.
Meng
and
K.
Ludema
, “
Wear models and predictive equations: Their form and content
,”
Wear
181–183
,
443
457
(
1995
).
52.
B. S.
Thapa
,
O. G.
Dahlhaug
, and
B.
Thapa
, “
Sediment erosion in hydro turbines and its effect on the flow around guide vanes of Francis turbine
,”
Renewable Sustainable Energy Rev.
49
,
1100
1113
(
2015
).
53.
D.
Felix
, “
Experimental investigation on suspended sediment, hydro-abrasive erosion and efficiency reductions of coated Pelton turbines
,” VAW-Mitteilungen, 238.
54.
D.
Felix
,
I.
Albayrak
,
A.
Abgottspon
, and
R. M.
Boes
, “
Hydro-abrasive erosion of hydraulic turbines caused by sediment - A century of research and development
,”
IOP Conf. Ser.
49
,
122001
(
2016
).
55.
B.
Guo
,
Y. X.
Xiao
,
A. K.
Rai
,
Q. W.
Liang
, and
J.
Liu
, “
Analysis of the air-water-sediment flow behavior in Pelton buckets using a Eulerian-Lagrangian approach
,”
Energy
218
,
119522
(
2021
).
56.
A. K.
Rai
,
A.
Kumar
,
X.
Yexiang
,
B.
Guo
,
T.
Staubli
, and
N.
Arora
, “
Analysis and visualization of progressive erosion in Pelton buckets
,”
IOP Conf. Ser.
774
,
012105
(
2021
).
57.
M.
Padhy
and
R.
Saini
, “
Study of silt erosion on performance of a Pelton turbine
,”
Energy
36
,
141
147
(
2011
).
58.
A.
Abgottspon
,
M.
Burg
,
T.
Staubli
, and
D.
Felix
, “
Analysis of hydro-abrasive erosion and efficiency changes measured on the coated Pelton turbines of HPP fieschertal
,”
IOP Conf. Ser.
774
,
012030
(
2021
).
59.
L.
Han
,
Y.
Wang
,
G. F.
Zhang
, and
X. Z.
Wei
, “
The particle induced energy loss mechanism of Pelton turbine
,”
Renewable Energy
173
,
237
248
(
2021
).
60.
A. K.
Rai
,
A.
Kumar
, and
T.
Staubli
, “
Effect of concentration and size of sediments on hydro-abrasive erosion of Pelton turbine
,”
Renewable Energy
145
,
893
902
(
2020
).
61.
X. W.
Luo
,
B.
Ji
, and
Y.
Tsujimoto
, “
A review of cavitation in hydraulic machinery
,”
J. Hydrodyn.
28
,
335
358
(
2016
).
62.
T.
Melissaris
,
S.
Schenke
, and
T. J. C.
van Terwisga
, “
Cavitation erosion risk assessment for a marine propeller behind a Ro-Ro container vessel
,”
Phys. Fluids
35
,
013342
(
2023
).
63.
V.-T.
Nguyen
,
T.-H.
Phan
, and
W.-G.
Park
, “
Modeling of shock wave produced by collapse of cavitation bubble using a fully conservative multiphase model
,”
Phys. Fluids
35
,
116102
(
2023
).
64.
A.
Rossetti
,
G.
Pavesi
,
G.
Ardizzon
, and
A.
Santolin
, “
Numerical analyses of cavitating flow in a Pelton turbine
,”
J. Fluids Eng.
136
,
081304
(
2014
).
65.
A.
Shima
, “
Bubble dynamics
,” in
Cavitation of Hydraulic Machinery
, edited by S. C. Li (University of Warwick, UK,
2000
), pp.
47
156
.
66.
D.
Jošt
,
A.
Škerlavaj
,
V.
Pirnat
,
M.
Morgut
, and
E.
Nobile
, “
Numerical prediction of efficiency and cavitation for a Pelton turbine
,”
IOP Conf. Ser.
240
,
062033
(
2019
).
67.
N.
Qiu
,
H.
Zhu
,
P.
Xu
,
B.
Che
,
J.
Wu
,
W.
Zhou
, and
C.
Wang
, “
Assessment of cavitation erosion risk indicated by pressure impact exceeding material strength threshold
,”
Phys. Fluids
35
,
093307
(
2023
).
68.
H.
Choi
,
S.
Oh
,
C.
Lee
,
H.
Choi
, and
H.
Park
, “
Effect of superhydrophilic surface on the cavitation behaviors of rotating blades
,”
Phys. Fluids
35
,
113316
(
2023
).
69.
C. G.
Duan
and
V. Y.
Karelin
,
Abrasive Erosion and Corrosion of Hydraulic Machinery
(
World Scientific
,
2003
), pp.
155
233
.
70.
I.
Hutchings
and
R.
Winter
, “
Particle erosion of ductile metals: A mechanism of material removal
,”
Wear
27
,
121
128
(
1974
).
71.
P.
Shewmon
and
G.
Sundararajan
, “
The erosion of metals
,”
Annu. Rev. Mater. Sci.
13
,
301
318
(
1983
).
72.
Y.
Oka
,
H.
Ohnogi
,
T.
Hosokawa
, and
M.
Matsumura
, “
The impact angle dependence of erosion damage caused by solid particle impact
,”
Wear
203–204
,
573
579
(
1997
).
73.
Y.
Oka
,
M.
Matsumura
, and
T.
Kawabata
, “
Relationship between surface hardness and erosion damage caused by solid particle impact
,”
Wear
162–164
,
688
695
(
1993
).
74.
M.
Takaffoli
and
M.
Papini
, “
Material deformation and removal due to single particle impacts on ductile materials using smoothed particle hydrodynamics
,”
Wear
274–275
,
50
59
(
2012
).
75.
H. S.
Grewal
,
H.
Singh
, and
E.-S.
Yoon
, “
Interplay between erodent concentration and impingement angle for erosion in dilute water-sand flows
,”
Wear
332–333
,
1111
1119
(
2015
).
76.
A. K.
Chauhan
,
D.
Goel
, and
S.
Prakash
, “
Erosion behaviour of hydro turbine steels
,”
Bull. Mater. Sci.
31
,
115
120
(
2008
).
77.
F.
Wang
,
I. L.
Animasaun
,
Q. M.
Al-Mdallal
,
S.
Saranya
, and
T.
Muhammad
, “
Dynamics through three-inlets of t-shaped ducts: Significance of inlet velocity on transient air and water experiencing cold fronts subject to turbulence
,”
Int. Commun. Heat Mass Transfer
148
,
107034
(
2023
).
78.
J.
Molinari
and
M.
Ortiz
, “
A study of solid-particle erosion of metallic targets
,”
Int. J. Impact Eng.
27
,
347
358
(
2002
).
79.
Y.
Oka
,
K.
Okamura
, and
T.
Yoshida
, “
Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation
,”
Wear
259
,
95
101
(
2005
).
80.
C. M.
Preece
and
N. H.
Macmillan
, “
Erosion
,”
Annu. Rev. Mater. Sci.
7
,
95
121
(
1977
).
81.
M.-H.
Wang
,
C.
Huang
,
K.
Nandakumar
,
P.
Minev
,
J.
Luo
, and
S.
Chiovelli
, “
Computational fluid dynamics modelling and experimental study of erosion in slurry jet flows
,”
Int. J. Comput. Fluid Dyn.
23
,
155
172
(
2009
).
82.
A. K.
Rai
,
A.
Kumar
, and
T.
Staubli
, “
Analytical modelling and mechanism of hydro-abrasive erosion in Pelton buckets
,”
Wear
436–437
,
203003
(
2019
).
83.
P.
Vesilind
, “
The rosin-rammler particle size distribution
,”
Resour. Recovery Conserv.
5
,
275
277
(
1980
).
84.
P.
Balu
,
F.
Kong
,
S.
Hamid
, and
R.
Kovacevic
, “
Finite element modeling of solid particle erosion in AISI 4140 steel and nickel-tungsten carbide composite material produced by the laser-based powder deposition process
,”
Tribol. Int.
62
,
18
28
(
2013
).
85.
B.
Yildirim
,
S.
Muftu
, and
A.
Gouldstone
, “
Modeling of high velocity impact of spherical particles
,”
Wear
270
,
703
713
(
2011
).
86.
R.
Tarodiya
,
S.
Khullar
, and
A.
Levy
, “
Assessment of erosive wear performance of Pelton turbine injectors using CFD-DEM simulations
,”
Powder Technol.
408
,
117763
(
2022
).
87.
Y.-F.
Wang
and
Z.-G.
Yang
, “
Finite element model of erosive wear on ductile and brittle materials
,”
Wear
265
,
871
878
(
2008
).
88.
A.
Mitra
,
A.
Shukla
,
A.
Kumar
,
Amit
,
A.
Kumar
, and
R.
Mittal
, “
Analysis of performance of X21CrMoV57 and SS 410 under simulated conditions of Pelton turbine with the help of slurry erosion test rig
,”
Mater. Today: Proc.
5
,
18839
18847
(
2018
).
89.
A. K.
Rai
,
A.
Kumar
,
T.
Staubli
, and
X.
Yexiang
, “
Interpretation and application of the hydro-abrasive erosion model from IEC 62364 (2013) for Pelton turbines
,”
Renewable Energy
160
,
396
408
(
2020
).
90.
G. V.
Messa
,
S.
Mandelli
, and
S.
Malavasi
, “
Hydro-abrasive erosion in Pelton turbine injectors: A numerical study
,”
Renewable Energy
130
,
474
488
(
2019
).
91.
D.
Benzon
,
A.
Židonis
,
A.
Panagiotopoulos
,
G. A.
Aggidis
,
J. S.
Anagnostopoulos
, and
D. E.
Papantonis
, “
Numerical Investigation of the Spear Valve Configuration on the Performance of Pelton and Turgo Turbine Injectors and Runners
,”
J. Fluids Eng.
137
,
111201
(
2015
).
92.
D.
Benzon
,
A.
Židonis
,
A.
Panagiotopoulos
,
G. A.
Aggidis
,
J. S.
Anagnostopoulos
, and
D. E.
Papantonis
, “
Impulse turbine injector design improvement using computational fluid dynamics
,”
J. Fluids Eng.
137
,
041106
(
2015
).
93.
S.
Petley
,
A.
Panagiotopoulos
,
D. S.
Benzon
,
A.
Židonis
,
G. A.
Aggidis
,
J.
Anagnostopoulos
, and
D.
Papantonis
, “
Investigating the influence of the jet from three nozzle and spear design configurations on Pelton runner performance by numerical simulation
,”
IOP Conf. Ser.
240
,
022004
(
2019
).
94.
S.
Petley
,
A.
Zidonis
,
A.
Panagiotopoulos
,
D.
Benzon
,
G.
Aggidis
,
J.
Anagnostopoulos
, and
D.
Papantonis
, “
Out with the old, in with the new: Pelton hydro turbine performance influence utilizing three different injector geometries
,”
J. Fluids Eng.
141
,
081103
(
2018
).
95.
T.
Nonoshita
,
Y.
Matsumoto
,
T.
Kubota
, and
H.
Ohashi
, “
Numerical simulation of jet in a Pelton turbine
,” in
Hydraulic Machinery and Cavitation
, edited by
E.
Cabrera
,
V.
Espert
, and
F.
Martínez
(
Springer Netherlands
,
Dordrecht
,
1996
), pp.
352
360
.
96.
T.
Staubli
and
H.
Hauser
, “
Flow visualization—A diagnosis tool for Pelton turbines
,” in
IGHEM2004, Lucerne, Switzerland
(
2004
).
97.
F.
Alobaid
, “
An offset-method for Euler-Lagrange approach
,”
Chem. Eng. Sci.
138
,
173
193
(
2015
).
98.
B.
Guo
,
Y. X.
Xiao
,
A. K.
Rai
,
J.
Zhang
, and
Q. W.
Liang
, “
Sediment-laden flow and erosion modeling in a Pelton turbine injector
,”
Renewable Energy
162
,
30
42
(
2020
).
99.
M. Z.
Ud Din
and
G.
Harmain
, “
Assessment of erosive wear of Pelton turbine injector: Nozzle and spear combination A study of Chenani hydro-power plant
,”
Eng. Failure Anal.
116
,
104695
(
2020
).
100.
T. R.
Bajracharya
,
R.
Shresth
,
A.
Sapkota
,
A. B.
Timilsina
, and
A.
Engeda
, “
Modelling of hydroabrasive erosion in Pelton turbine injector
,”
Int. J. Rotating Mach.
2022
,
9772362
.
101.
M.
Peron
,
E.
Parkinson
,
L.
Geppert
, and
T.
Staubli
, “
Importance of jet quality on Pelton efficincy and cavitation
,” in International Conference on Hydraulic Efficiency Measurements (IGHEM,
2008
), pp.
1
9
.
102.
V.
Gupta
and
V.
Prasad
, “
Performance analysis of nozzles used in impulse hydraulic turbines using CFD
,” in
Proceeding of National Conference on Fluid Mechanics and Fluid Power, College of Engineering, Pune
(
2009
), pp.
1
8
.
103.
I. H.
Jung
,
Y. S.
Kim
,
D. H.
Shin
,
J. T.
Chung
, and
Y.
Shin
, “
Influence of spear needle eccentricity on jet quality in micro Pelton turbine for power generation
,”
Energy
175
,
58
65
(
2019
).
104.
S.
Khurana
and
V.
Goel
, “
Effect of jet diameter on erosion of turgo impulse turbine runner
,”
J. Mech. Sci. Technol.
28
,
4539
4546
(
2014
).
105.
T.
Staubli
and
H. P.
Hauser
, “
Numerical simulation of jet in a Pelton turbine
,” in
IGHEM2004, Lucerne, Switzerland
(
2004
), Vol.
1
, pp.
1
9
.
106.
G.
Chaudhari
,
S.
Channiwala
,
S.
Shah
, and
D.
Kulshreshtha
, “
Flow visualization study of jet and bucket interactions in traditional and hooped Pelton runner
,” in
ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference
, Vol.
3B
(
2019
).
107.
A. K.
Rai
,
A.
Kumar
, and
T.
Staubli
, “
Forces acting on particles in a Pelton bucket and similarity considerations for erosion
,”
IOP Conf. Ser.
49
,
122002
(
2016
).
108.
A. K.
Rai
,
A.
Kumar
, and
T.
Staubli
, “
Hydro-abrasive erosion in Pelton buckets: Classification and field study
,”
Wear
392–393
,
8
20
(
2017
).
109.
T. R.
Bajracharya
, “
Efficiency deterioration in Pelton turbines due to Sand-Particles-Led bucket erosion
,” Ph.D. thesis (Tribhuvan University,
2018
).
110.
M. K.
Padhy
and
R. P.
Saini
, “
Effect of size and concentration of silt particles on erosion of Pelton turbine buckets
,”
Energy
34
,
1477
1483
(
2009
).
111.
G. V.
Messa
and
S.
Malavasi
, “
The effect of sub-models and parameterizations in the simulation of abrasive jet impingement tests
,”
Wear
370–371
,
59
72
(
2017
).
112.
G. V.
Messa
and
S.
Malavasi
, “
A CFD-based method for slurry erosion prediction
,”
Wear
398–399
,
127
145
(
2018
).
113.
J.
Zhang
,
B. S.
McLaury
, and
S. A.
Shirazi
, “
Application and experimental validation of a CFD based erosion prediction procedure for jet impingement geometry
,”
Wear
394–395
,
11
19
(
2018
).
114.
J. C.
Marongiu
,
F.
Leboeuf
,
J. E.
Caro
, and
E.
Parkinson
, “
Free surface flows simulations in Pelton turbines using an hybrid SPH-ALE method
,”
J. Hydraul. Res.
48
,
40
49
(
2010
).
115.
M.
Rentschler
,
M.
Neuhauser
,
J.
Marongiu
, and
E.
Parkinson
, “
Understanding casing flow in Pelton turbines by numerical simulation
,”
IOP Conf. Ser.
49
,
022004
(
2016
).
116.
S.
Leguizamón
,
S.
Alimirzazadeh
,
E.
Jahanbakhsh
, and
F.
Avellan
, “
Multiscale simulation of erosive wear in a prototype-scale Pelton runner
,”
Renewable Energy
151
,
204
215
(
2020
).
117.
X. F.
Ge
,
J.
Sun
,
Y.
Zhou
,
J. G.
Cai
,
H.
Zhang
,
L.
Zhang
,
M. Q.
Ding
,
C. Z.
Deng
,
M.
Binama
, and
Y.
Zheng
, “
Experimental and numerical studies on opening and velocity influence on sediment erosion of Pelton turbine buckets
,”
Renewable Energy
173
,
1040
1056
(
2021
).
118.
Y.
Nakanishi
,
T.
Fujii
, and
K.
Wachi
, “
Numerical simulation of the flow in a Pelton bucket by a particle method 2nd report, flow and output power of runner at off-design operating points
,”
Trans JSME B
73
,
2524
2529
(
2007
).
119.
R.
Tarodiya
,
S.
Khullar
, and
A.
Levy
, “
Particulate flow and erosion modeling of a Pelton turbine injector using CFD-DEM simulations
,”
Powder Technol.
399
,
117168
(
2022
).
120.
M.
Egusquiza
,
E.
Egusquiza
,
C.
Valero
,
A.
Presas
,
D.
Valentín
, and
M.
Bossio
, “
Advanced condition monitoring of Pelton turbines
,”
Measurement
119
,
46
55
(
2018
).
121.
Y. X.
Xiao
,
C. J.
Zeng
,
J.
Zhang
,
Z. G.
Yan
, and
Z. W.
Wang
, “
Numerical analysis of the bucket surface roughness effects in Pelton turbine
,”
IOP Conf. Ser.
52
,
052032
(
2013
).
122.
L.
Han
,
Y.
Wang
,
G. F.
Zhang
, and
X. Z.
Wei
, “
Investigation of the erosion characteristics in the distribution parts of Pelton turbine
,”
J. Appl. Fluid Mech.
14
,
1809
1816
(
2021
).
123.
J. S.
Anagnostopoulos
and
D. E.
Papantonis
, “
A fast Lagrangian simulation method for flow analysis and runner design in Pelton turbines
,”
J. Hydrodyn.
24
,
930
941
(
2012
).
124.
A.
Židonis
,
A.
Panagiotopoulos
,
G. A.
Aggidis
,
J. S.
Anagnostopoulos
, and
D. E.
Papantonis
, “
Parametric optimisation of two Pelton turbine runner designs using CFD
,”
J. Hydrodyn.
27
,
403
412
(
2015
).
125.
J. C.
Marongiu
,
F.
Leboeuf
, and
E.
Parkinson
, “
Numerical simulation of the flow in a Pelton turbine using the meshless method smoothed particle hydrodynamics: A new simple solid boundary treatment
,”
Proc. Inst. Mech. Eng., Part A
221
,
849
856
(
2007
).
126.
A.
Rossetti
,
G.
Pavesi
,
G.
Cavazzini
,
A.
Santolin
, and
G.
Ardizzon
, “
Influence of the bucket geometry on the Pelton performance
,”
Proc. Inst. Mech. Eng., Part A
228
,
33
45
(
2014
).
127.
S.
Alimirzazadeh
,
T.
Kumashiro
,
S.
Leguizamón
,
A.
Maertens
,
E.
Jahanbakhsh
,
K.
Tani
, and
F.
Avellan
, “
GPU-accelerated Pelton turbine simulation using finite volume particle method coupled with linear eddy viscosity models
,”
IOP Conf. Ser.
240
,
072018
(
2019
).
128.
S.
Alimirzazadeh
,
J.
Decaix
,
F.
Avellan
,
S.
Crettenand
, and
C.
Münch-Alligné
, “
Numerical simulations of Pelton turbine flow to predict large head variation influence
,”
IOP Conf. Ser.
774
,
012033
(
2021
).
129.
S.
Alimirzazadeh
,
E.
Jahanbakhsh
,
A.
Maertens
,
S.
Leguizamón
, and
F.
Avellan
, “
GPU-accelerated 3-D finite volume particle method
,”
Comput. Fluids
171
,
79
93
(
2018
).
130.
C.
Vessaz
,
E.
Jahanbakhsh
, and
F.
Avellan
, “
Flow simulation of a Pelton bucket using finite volume particle method
,”
IOP Conf. Ser.
22
,
012003
(
2014
).
131.
M.
Hana
, “
A discussion on numerical simulation in Pelton turbines
,” in
19th IAHR Symposium, Singapore
(
1998
).
132.
X. Z.
Wei
,
K.
Yang
,
H. J.
Wang
,
R. Z.
Gong
, and
D. Y.
Li
, “
Numerical investigation for one bad-behaved flow in a Pelton turbine
,”
IOP Conf. Ser.
72
,
042033
(
2015
).
133.
K.
Patel
,
B.
Patel
,
M.
Yadav
, and
T.
Foggia
, “
Development of Pelton turbine using numerical simulation
,”
IOP Conf. Ser.
12
,
012048
(
2010
).
134.
C. J.
Zeng
,
Y. X.
Xiao
,
Y. Y.
Luo
,
J.
Zhang
,
Z. W.
Wang
,
H. G.
Fan
, and
S.-H.
Ahn
, “
Hydraulic performance prediction of a prototype four-nozzle Pelton turbine by entire flow path simulation
,”
Renewable Energy
125
,
270
282
(
2018
).
135.
A.
Rossetti
,
A.
Santolin
,
G.
Cavazzini
,
G.
Pavesi
, and
G.
Ardizzon
, “
Analysis of Pelton bucket efficiency
,” in
9th European Conference on Turbomachinery: Fluid Dynamics and Thermodynamics (ETC 2011),
Vol.
1
(
2011
), pp.
461
470
.
136.
M.
Choi
,
Y.-J.
Jung
, and
Y.
Shin
, “
Unsteady flow simulations of Pelton turbine at different rotational speeds
,”
Adv. Mech. Eng.
7
(
11
), (
2015
).
137.
A.
Santolin
,
G.
Cavazzini
,
G.
Ardizzon
,
G.
Pavesi
,
M.
Manna
,
C.
Scrivener
, and
F.
Martelli
, “
Numerical investigation of the interaction between jet and bucket in a Pelton turbine
,”
Proc. Inst. Mech. Eng., Part A
223
,
721
728
(
2009
).
138.
A.
Židonis
,
D. S.
Benzon
, and
G. A.
Aggidis
, “
Development of hydro impulse turbines and new opportunities
,”
Renewable Sustainable Energy Rev.
51
,
1624
1635
(
2015
).
139.
B.
Mann
and
V.
Arya
, “
Abrasive and erosive wear characteristics of plasma nitriding and HVOF coatings: Their application in hydro turbines
,”
Wear
249
,
354
360
(
2001
).
140.
R. M.
Boes
, “
Real-time monitoring of suspended sediment concentration and particle size distribution in the headwater way of a high-head hydropower plant
,” in
Proceedings of the 33rd IAHR Congress
(IAHR, 2009), Vol. 11026, pp.
4037
4044
.
141.
H.
Clark
and
R. B.
Hartwich
, “
A re-examination of the “particle size effect” in slurry erosion
,”
Wear
248
,
147
161
(
2001
).
142.
D.
López
,
J.
Zapata
,
M.
Sepúlveda
,
E.
Hoyos
, and
A.
Toro
, “
The role of particle size and solids concentration on the transition from moderate to severe slurry wear regimes of ASTM A743 grade CA6 NM stainless steel
,”
Tribol. Int.
127
,
96
107
(
2018
).
143.
B. P.
Shrestha
,
B.
Gautam
, and
T. R.
Bajracharya
, “
Computational analysis of Pelton bucket tip erosion using digital image processing
,”
Proc. SPIE
6833
,
68333C
(
2007
).
144.
R.
Maldet
, “
Pelton runner with high erosion caused by glacier sediment: Assessment and measures
,” in
15th International Seminar on Hydropower Plants, Vienna, Austria
(Wien,
2008
), pp.
639
646
.
145.
A.
Kumar
and
S.
Tyagi
, “
Problem of erosion of under water parts due to heavy silt in ganga valley power station
,” in
Silt Damages to Equipment in Hydro Power Stations and Remedial Measures
(
CBIP
,
New Delhi
,
1996
).
146.
S. C.
Singh
, “
Operational problems and development of a new runner for silty water
,” Int. WP & DC (November),
42
(
1990
).
147.
A. K.
Rai
and
A.
Kumar
, “
Analyzing hydro abrasive erosion in Kaplan turbine: A case study from India
,”
J. Hydrodyn.
28
,
863
872
(
2016
).
148.
A.
Panthee
,
B.
Thapa
, and
H. P.
Neopane
, “
Quality control in welding repair of Pelton runner
,”
Renewable Energy
79
,
96
102
(
2015
).
149.
M.
Hana
, “
A discussion on numerical simulation in Pelton turbines
,” in
Proceedings of the 19th IAHR Symposium
(
IAHR
,
1998
), pp.
306
315
.
150.
Z.-Y.
Mei
, “
Wear problem of turbines on silt-laden rivers
,” in
Fourth International Fluid Machinery and Fluid Engineering Conference
(
1993
), Vol.
3
, pp.
1
7
.
151.
P.-H.
Wu
, “
Discussion on the solid critical concentration and the darnage under the combined action of cavitation and silt abrasion
,” in
Proceedings of the 10th Symposium of the Hydropower Equipment Professional Committee
(
China Institute of Water Resources and Hydropower Science
,
1991
), pp.
176
183
.
152.
J. F.
Santa
,
L. A.
Espitia
,
J. A.
Blanco
,
S. A.
Romo
, and
A.
Toro
, “
Slurry and cavitation erosion resistance of thermal spray coatings
,”
Wear
267
,
160
167
(
2009
).
153.
K.
Winkler
, “
Hydro-abrasive erosion: Problems and solutions
,”
IOP Conf. Ser.
22
,
052022
(
2014
).
154.
U.
Karadžič
,
A.
Bergant
, and
P.
Vukoslavevi·
, “
A novel Pelton turbine model for water hammer analysis
,”
Strojniški Vestn. - J. Mech. Eng.
55
,
369
380
(
2009
), see https://www.sv-jme.eu/article/a-novel-pelton-turbine-model-for-water-hammer-analysis/.
You do not currently have access to this content.