This paper presents an evaluation of passive control methods that employ surface protrusions to mitigate the aerodynamic sound generated from a cylinder wake flow. Building on previous designs optimized for low Reynolds numbers (Re = 150) through adjoint-based aeroacoustic shape optimization, this study investigated the performance under a moderate Reynolds number (Re = 67 000) condition typical of mechanical engineering applications using aeroacoustic simulations based on the lattice Boltzmann method. Three configurations of surface protrusions were tested, all of which were found to significantly reduce the mean drag by at least 45% compared with that of an unmodified circular cylinder. Designs featuring rear protrusions outperformed the conventional splitter plate in terms of the sound reduction performance, with symmetrical protrusions on both the front and rear surfaces achieving a tonal sound reduction of 13 dB. However, a specific protrusion design increased the low-frequency sound owing to the intensified large-scale flow separation. These findings highlight the effectiveness of rear protrusions in suppressing wake oscillations and dipole sound generation in the subcritical Reynolds number range. Moreover, the study revealed the need to tailor the front protrusion shape to the Reynolds number for performance optimization.

1.
H. D.
Yao
and
L.
Davidson
, “
Generation of interior cavity noise due to window vibration excited by turbulent flows past a generic side-view mirror
,”
Phys. Fluids
30
,
036104
(
2018
).
2.
K. K.
Chode
,
H.
Viswanathan
, and
K.
Chow
, “
Noise emitted from a generic side-view mirror with different aspect ratios and inclinations
,”
Phys. Fluids
33
,
084105
(
2021
).
3.
K. K.
Chode
,
H.
Viswanathan
,
K.
Chow
, and
H.
Reese
, “
Investigating the aerodynamic drag and noise characteristics of a standard squareback vehicle with inclined side-view mirror configurations using a hybrid computational aeroacoustics (CAA) approach
,”
Phys. Fluids
35
,
075148
(
2023
).
4.
H.
Li
,
X.
Liu
,
D.
Thompson
, and
G.
Squicciarini
, “
The distribution of pantograph aerodynamic noise on train external surfaces and the influence of flow
,”
Appl. Acoust.
188
,
108542
(
2022
).
5.
L.
Qi-liang
,
L.
Zhuo-ming
,
O.
Meng-han
, and
Y.
Zhi-gang
, “
Coherence and reduced order analyses of flow field and aerodynamic noise for full-scale high-speed trains pantograph
,”
Appl. Acoust.
193
,
108777
(
2022
).
6.
T.
Li
,
D.
Qin
,
N.
Zhou
,
J.
Zhang
, and
W.
Zhang
, “
Numerical study on the aerodynamic and acoustic scale effects for high-speed train body and pantograph
,”
Appl. Acoust.
196
,
108886
(
2022
).
7.
T. R.
Ricciardi
,
W. R.
Wolf
,
N. J.
Moffitt
,
J. R.
Kreitzman
, and
P.
Bent
, “
Numerical noise prediction and source identification of a realistic landing gear
,”
J. Sound Vib.
496
,
115933
(
2021
).
8.
V.
Kopiev
,
I.
Belyaev
,
M.
Zaytsev
, and
K.
Zhao
, “
Experimental study of truncated-cylinder struts for noise reduction of large-scale landing gears
,”
J. Sound Vib.
511
,
116362
(
2021
).
9.
Y.
Zhang
,
B.
Chen
,
K.
Zhao
,
X.
Tang
,
X.
Yang
, and
G.
Hu
, “
Intelligent prediction of acoustic performance of landing gear using deep learning
,”
Phys. Fluids
35
,
076112
(
2023
).
10.
H.
Choi
,
W. P.
Jeon
, and
J.
Kim
, “
Control of flow over a bluff body
,”
Annu. Rev. Fluid Mech.
40
,
113
(
2008
).
11.
W. L.
Chen
,
Y.
Huang
,
C.
Chen
,
H.
Yu
, and
D.
Gao
, “
Review of active control of circular cylinder flow
,”
Ocean Eng.
258
,
111840
(
2022
).
12.
M.
Zhao
, “
A review of recent studies on the control of vortex-induced vibration of circular cylinders
,”
Ocean Eng.
285
,
115389
(
2023
).
13.
S.
Karimi
,
B.
Mohammadikalakoo
, and
P.
Schito
, “
Performance enhancement of single dielectric barrier discharge flow control actuators by means of rear linking tunnels on a reference bluff body using CFD
,”
J. Wind Eng. Ind. Aerodyn.
209
,
104488
(
2021
).
14.
Z.
Chen
and
C. Y.
Wen
, “
Flow control of a D-shaped bluff body using different DBD plasma actuators
,”
J. Fluids Struct.
103
,
103292
(
2021
).
15.
G.
Minelli
,
T.
Dong
,
B. R.
Noack
, and
S.
Krajnović
, “
Upstream actuation for bluff-body wake control driven by a genetically inspired optimization
,”
J. Fluid Mech.
893
,
A1
(
2020
).
16.
Z. X.
Qiao
,
G.
Minelli
,
B. R.
Noack
,
S.
Krajnović
, and
V.
Chernoray
, “
Multi-frequency aerodynamic control of a yawed bluff body optimized with a genetic algorithm
,”
J. Wind Eng. Ind. Aerodyn.
212
,
104600
(
2021
).
17.
C.
Zheng
,
T.
Ji
,
F.
Xie
,
X.
Zhang
,
H.
Zheng
, and
Y.
Zheng
, “
From active learning to deep reinforcement learning: Intelligent active flow control in suppressing vortex-induced vibration
,”
Phys. Fluids
33
,
063607
(
2021
).
18.
F.
Ren
,
C.
Wang
, and
H.
Tang
, “
Bluff body uses deep-reinforcement-learning trained active flow control to achieve hydrodynamic stealth
,”
Phys. Fluids
33
,
093602
(
2021
).
19.
E.
Amico
,
G.
Cafiero
, and
G.
Iuso
, “
Deep reinforcement learning for active control of a three-dimensional bluff body wake
,”
Phys. Fluids
34
,
105126
(
2022
).
20.
D.
You
,
H.
Choi
,
M. R.
Choi
, and
S. H.
Kang
, “
Control of flow-induced noise behind a circular cylinder using splitter plates
,”
AIAA J.
36
,
1961
(
1998
).
21.
F.
Duan
and
J.
Wang
, “
Fluid–structure–sound interaction in noise reduction of a circular cylinder with flexible splitter plate
,”
J. Fluid Mech.
920
,
A6
(
2021
).
22.
B.
Mahato
,
N.
Ganta
, and
Y. G.
Bhumkar
, “
Effective control of aeolian tone using a pair of splitter plates
,”
J. Sound Vib.
494
,
115906
(
2021
).
23.
F.
Eydi
and
A.
Mojra
, “
A numerical study on the benefits of passive-arc plates on drag and noise reductions of a cylinder in turbulent flow
,”
Phys. Fluids
35
,
085102
(
2023
).
24.
T. F.
Geyer
, “
Effect of a porous coating on the vortex shedding noise of a cylinder in turbulent flow
,”
Appl. Acoust.
195
,
108834
(
2022
).
25.
H.
Du
,
Q.
Zhang
,
Q.
Li
,
W.
Kong
, and
L.
Yang
, “
Drag reduction in cylindrical wake flow using porous material
,”
Phys. Fluids
34
,
045102
(
2022
).
26.
H. S.
Yoon
,
K. J.
Oh
,
H. J.
Kim
,
M.
Il Kim
, and
J.
Moon
, “
Double wavy geometric disturbance to the bluff body flow at a subcritical Reynolds number
,”
Ocean Eng.
195
,
106713
(
2020
).
27.
H.
Bai
,
Z.
Lu
,
R.
Wei
,
Y.
Yang
, and
Y.
Liu
, “
Noise reduction of sinusoidal wavy cylinder in subcritical flow regime
,”
Phys. Fluids
33
,
105120
(
2021
).
28.
K.
Kusano
, “
Adjoint sensitivity analysis method based on lattice Boltzmann equation for flow-induced sound problems
,”
Comput. Fluids
248
,
105662
(
2022
).
29.
K.
Kusano
, “
Passive control of cylinder aeolian tone by surface protrusions at low Reynolds number
,”
Phys. Fluids
35
,
053607
(
2023
).
30.
S.
Moreau
, “
The third golden age of aeroacoustics
,”
Phys. Fluids
34
,
031301
(
2022
).
31.
M.
Geier
,
A.
Greiner
, and
J. G.
Korvink
, “
Cascaded digital lattice Boltzmann automata for high Reynolds number flow
,”
Phys. Rev. E
73
,
066705
(
2006
).
32.
L.
Fei
,
K. H.
Luo
, and
Q.
Li
, “
Three-dimensional cascaded lattice Boltzmann method: Improved implementation and consistent forcing scheme
,”
Phys. Rev. E
97
,
53309
(
2018
).
33.
F.
Nicoud
and
F.
Ducros
, “
Subgrid-scale stress modelling based on the square of the velocity gradient tensor
,”
Flow, Turbul. Combust.
62
,
183
(
1999
).
34.
M.
Weickert
,
G.
Teike
,
O.
Schmidt
, and
M.
Sommerfeld
, “
Investigation of the LES WALE turbulence model within the lattice Boltzmann framework
,”
Comput. Math. Appl.
59
,
2200
(
2010
).
35.
C.
Norberg
, “
Fluctuating lift on a circular cylinder: Review and new measurements
,”
J. Fluids Struct.
17
,
57
(
2003
).
36.
K.
Nakahashi
and
L. S.
Kim
, “
Building-cube method for largescale, high resolution flow computations
,” AIAA Paper No. 2004-434,
2004
.
37.
D. V.
Gaitonde
and
M. R.
Visbal
, “
Pade-plusmn;-type higher-order boundary filters for the Navier–Stokes equations
,”
AIAA J.
38
,
2103
(
2000
).
38.
E. W. S.
Kam
,
R. M. C.
So
, and
R. C. K.
Leung
, “
Lattice Boltzmann method simulation of aeroacoustics and nonreflecting boundary conditions
,”
AIAA J.
45
,
1703
(
2007
).
39.
M.
Bouzidi
,
M.
Firdaouss
, and
P.
Lallemand
,
Phys. Fluids
13
,
3452
(
2001
).
40.
J. H.
Seo
and
Y. J.
Moon
, “
Aerodynamic noise prediction for long-span bodies
,”
J. Sound Vib.
306
,
564
(
2007
).
41.
T. P.
Lloyd
and
M.
James
, “
Large eddy simulations of a circular cylinder at Reynolds numbers surrounding the drag crisis
,”
Appl. Ocean Res.
59
,
676
(
2016
).
42.
F.
Lesage
and
I. S.
Gartshore
, “
A method of reducing drag and fluctuating side force on bluff bodies
,”
J. Wind Eng. Ind. Aerodyn.
25
,
229
(
1987
).
43.
C.
Zheng
,
P.
Zhou
,
S.
Zhong
,
X.
Zhang
,
X.
Huang
, and
R. C. H.
So
, “
An experimental investigation of drag and noise reduction from a circular cylinder using longitudinal grooves
,”
Phys. Fluids
33
,
115110
(
2021
).
44.
H.
Nishimura
and
Y.
Taniike
, “
Aerodynamic characteristics of fluctuating forces on a circular cylinder
,”
J. Wind Eng. Ind. Aerodyn.
89
,
713
(
2001
).
45.
Y.
Xing
,
P.
Liu
,
H.
Guo
, and
L.
Li
, “
Effect of helical cables on cylinder noise control
,”
Appl. Acoust.
122
,
152
(
2017
).
46.
K.
Kusano
,
K.
Yamada
, and
M.
Furukawa
, “
Aeroacoustic simulation of broadband sound generated from low-Mach-number flows using a lattice Boltzmann method
,”
J. Sound Vib.
467
,
115044
(
2020
).
47.
T. F.
Geyer
, “
Experimental evaluation of cylinder vortex shedding noise reduction using porous material
,”
Exp. Fluids
61
,
153
(
2020
).
You do not currently have access to this content.