Estuarine sediment transport is driven by the combined action of a multitude of influencing factors, including astronomical tides, waves dynamics, and river discharges. This study focuses on the effects of wave forces on sediment transport patterns in micro-tidal estuaries near Wanbao Beach, China. Numerical simulations are carried out using Delft3D. Modeling scenarios are configured using different wave characteristics, spanning from typical waves to those with a return period of 50 years. Results show that waves have a positive effect on landward sediment transport, resulting a larger active range of sediment. By comparing the spatial geomorphic variations under varying wave conditions, we find that modifications in significant wave height (Hs) primarily impact the position of erosion and deposition zones, whereas alterations in spectral peak period (Tp) predominantly influence the magnitude of these changes. The finding is further demonstrated by a comparison of residual currents under different wave intensities. Analysis of sediment transport rates in different transects indicates that the sediment transport rate is highest at the mouth transects and lowest at the alongshore transects. Moreover, variations in sediment transport rates exhibit distinctive patterns between the two outlet transects, even when subjected to identical wave conditions. The disparities are attributed to differences in runoff and the topographical features in proximity to the estuaries. Additionally, we find the sediment transport rate becomes insensitive to the variations in Hs when Hs is larger than a threshold value. The threshold decreases with increasing Tp.

1.
H. L.
Luan
,
P. X.
Ding
,
Z. B.
Wang
,
J. Z.
Ge
, and
S. L.
Yang
, “
Decadal morphological evolution of the Yangtze Estuary in response to river input changes and estuarine engineering projects
,”
Geomorphology
265
,
12
(
2016
).
2.
X.
Zhou
,
J.
Zheng
,
D.-J.
Doong
, and
Z.
Demirbilek
, “
Sea level rise along the East Asia and Chinese coasts and its role on the morphodynamic response of the Yangtze River Estuary
,”
Ocean Eng.
71
,
40
(
2013
).
3.
L. L. A. J.
Miguel
,
J. W. A.
Castro
, and
F. P. J.
Nehama
, “
Tidal impact on suspended sediments in the Macuse Estuary in Mozambique
,”
Reg. Stud. Mar. Sci.
16
,
1
(
2017
).
4.
R.
Kirk
, “
River-beach interaction on mixed sand and gravel coasts: Geomorphic model for water resource planning
,”
Appl. Geogr.
11
,
267
(
1991
).
5.
J.
Wang
,
Z.
Dai
,
S.
Fagherazzi
,
X.
Zhang
, and
X.
Liu
, “
Hydro-morphodynamics triggered by extreme riverine floods in a mega fluvial-tidal delta
,”
Sci. Total Environ.
809
,
152076
(
2022
).
6.
L.
Zhu
,
W.
Gong
,
H.
Zhang
,
W.
Huang
, and
R.
Zhang
, “
Numerical study of sediment transport time scales in an ebb-dominated waterway
,”
J. Hydrol.
591
,
125299
(
2020
).
7.
J. H.
Nienhuis
,
A. D.
Ashton
,
D. A.
Edmonds
,
A.
Hoitink
,
A. J.
Kettner
,
J. C.
Rowland
, and
T. E.
Törnqvist
, “
Global-scale human impact on delta morphology has led to net land area gain
,”
Nature
577
,
514
(
2020
).
8.
H.
Glover
,
A.
Ogston
,
A.
Fricke
,
C.
Nittrouer
,
C.
Aung
,
T.
Naing
,
K. K.
Kyu
, and
H.
Htike
, “
Connecting sediment retention to distributary-channel hydrodynamics and sediment dynamics in a tide-dominated delta: The Ayeyarwady Delta, Myanmar
,”
J. Geophys. Res.: Earth Surf.
126
,
e2020JF005882
, https://doi.org/10.1029/2020JF005882 (
2021
).
9.
N.
Asp
,
V.
Gomes
,
C.
Schettini
,
P.
Souza-Filho
,
E.
Siegle
,
A.
Ogston
,
C.
Nittrouer
,
J.
Silva
,
W.
Nascimento
, Jr.
,
S.
Souza
et al, “
Sediment dynamics of a tropical tide-dominated estuary: Turbidity maximum, mangroves and the role of the amazon river sediment load
,”
Estuarine, Coastal Shelf Sci.
214
,
10
(
2018
).
10.
T.
Kim
,
B.
Choi
, and
S.
Lee
, “
Hydrodynamics and sedimentation induced by large-scale coastal developments in the Keum River Estuary, Korea
,”
Estuarine, Coastal Shelf Sci.
68
,
515
(
2006
).
11.
L. O.
Amoudry
and
A. J.
Souza
, “
Deterministic coastal morphological and sediment transport modeling: A review and discussion
,”
Rev. Geophys.
49
,
RG2002
, https://doi.org/10.1029/2010RG000341 (
2011
).
12.
K.
Choi
,
D.
Kim
, and
J.
Jo
, “
Morphodynamic evolution of the macrotidal Sittaung River Estuary, Myanmar: Tidal versus seasonal controls
,”
Mar. Geol.
430
,
106367
(
2020
).
13.
P.
Matte
,
Y.
Secretan
, and
J.
Morin
, “
Drivers of residual and tidal flow variability in the St. Lawrence fluvial estuary: Influence on tidal wave propagation
,”
Cont. Shelf Res.
174
,
158
(
2019
).
14.
M.
Zhang
,
I.
Townend
,
Y.
Zhou
, and
H.
Cai
, “
Seasonal variation of river and tide energy in the Yangtze Estuary, China
,”
Earth Surf. Processes Landforms
41
,
98
(
2016
).
15.
U.
Simeoni
and
C.
Corbau
, “
A review of the Delta Po evolution (Italy) related to climatic changes and human impacts
,”
Geomorphology
107
,
64
(
2009
).
16.
E. J.
Anthony
, “
Wave influence in the construction, shaping and destruction of river deltas: A review
,”
Mar. Geol.
361
,
53
(
2015
).
17.
R. P.
Bourman
,
C.
Murray-Wallace
,
A.
Belperio
, and
N.
Harvey
, “
Rapid coastal geomorphic change in the River Murray Estuary of Australia
,”
Mar. Geol.
170
,
141
(
2000
).
18.
S.
Temmerman
,
P.
Meire
,
T. J.
Bouma
,
P. M.
Herman
,
T.
Ysebaert
, and
H. J.
De Vriend
, “
Ecosystem-based coastal defence in the face of global change
,”
Nature
504
,
79
(
2013
).
19.
P. L.
Barnard
,
L. H.
Erikson
,
E. P.
Elias
, and
P.
Dartnell
, “
Sediment transport patterns in the San Francisco Bay Coastal system from cross-validation of bedform asymmetry and modeled residual flux
,”
Mar. Geol.
345
,
72
(
2013
).
20.
J.
Brown
and
A.
Davies
, “
Flood/ebb tidal asymmetry in a shallow sandy estuary and the impact on net sand transport
,”
Geomorphology
114
,
431
(
2010
).
21.
Y.
Ding
and
S. S.
Wang
, “
Development and application of a coastal and estuarine morphological process modeling system
,”
J. Coastal Res.
2008
,
127
.
22.
B.
Yuan
,
J.
Sun
,
B.
Lin
, and
F.
Zhang
, “
Long-term morphodynamics of a large estuary subject to decreasing sediment supply and sea level rise
,”
Global Planet. Change
191
,
103212
(
2020
).
23.
P.
Dissanayake
,
J.
Brown
, and
H.
Karunarathna
, “
Modelling storm-induced beach/dune evolution: Sefton coast, Liverpool Bay, UK
,”
Mar. Geol.
357
,
225
(
2014
).
24.
D. A.
Edmonds
and
R. L.
Slingerland
, “
Mechanics of river mouth bar formation: Implications for the morphodynamics of delta distributary networks
,”
J. Geophys. Res.: Earth Surf.
112
,
F02034
, https://doi.org/10.1029/2006JF000574 (
2007
).
25.
J.
Hopkins
,
S.
Elgar
, and
B.
Raubenheimer
, “
Storm impact on morphological evolution of a sandy inlet
,”
J. Geophys. Res.: Oceans
123
,
5751
, https://doi.org/10.1029/2017JC013708 (
2018
).
26.
L.
Wright
, “
Sediment transport and deposition at river mouths: A synthesis
,”
Geol. Soc. Am. Bull.
88
,
857
(
1977
).
27.
N.
Izumi
,
H.
Tanaka
, and
M.
Date
, “
Inceptive topography of fluvial-dominated river mouth bars
,” in
Proceedings of the Seventh International Symposium on River Sedimentation
(
AA Balkema
Brookfield, VT
,
1999
), pp.
899
904
.
28.
J. C.
Rowland
,
W. E.
Dietrich
, and
M. T.
Stacey
, “
Morphodynamics of subaqueous levee formation: Insights into river mouth morphologies arising from experiments
,”
J. Geophys. Res.: Earth Surf.
115
,
F04007
, https://doi.org/10.1029/2010JF001684 (
2010
).
29.
W.
Nardin
,
G.
Mariotti
,
D.
Edmonds
,
R.
Guercio
, and
S.
Fagherazzi
, “
Growth of river mouth bars in sheltered bays in the presence of frontal waves
,”
J. Geophys. Res.: Earth Surf.
118
,
872
, https://doi.org/10.1002/jgrf.20057 (
2013
).
30.
C. R.
Esposito
,
I. Y.
Georgiou
, and
A. S.
Kolker
, “
Hydrodynamic and geomorphic controls on mouth bar evolution
,”
Geophys. Res. Lett.
40
,
1540
, https://doi.org/10.1002/grl.50333 (
2013
).
31.
J. H.
Nienhuis
,
A. D.
Ashton
,
P. C.
Roos
,
S. J.
Hulscher
, and
L.
Giosan
, “
Wave reworking of abandoned deltas
,”
Geophys. Res. Lett.
40
,
5899
, https://doi.org/10.1002/2013GL058231 (
2013
).
32.
J. P.
Bhattacharya
and
L.
Giosan
, “
Wave-influenced deltas: Geomorphological implications for facies reconstruction
,”
Sedimentology
50
,
187
(
2003
).
33.
M. O.
Hayes
, “
General morphology and sediment patterns in tidal inlets
,”
Sediment. Geol.
26
,
139
(
1980
).
34.
H.
De Swart
and
J.
Zimmerman
, “
Morphodynamics of tidal inlet systems
,”
Annu. Rev. Fluid Mech.
41
,
203
(
2009
).
35.
A. D.
Ashton
and
L.
Giosan
, “
Wave-angle control of delta evolution
,”
Geophys. Res. Lett.
38
,
L13405
, https://doi.org/10.1029/2011GL047630 (
2011
).
36.
W.
Gao
,
D.
Shao
,
Z. B.
Wang
,
W.
Nardin
,
W.
Yang
,
T.
Sun
, and
B.
Cui
, “
Combined effects of unsteady river discharges and wave conditions on river mouth bar morphodynamics
,”
Geophys. Res. Lett.
45
,
12903
, https://doi.org/10.1029/2018GL080447 (
2018
).
37.
Deltares
, “
Delft3d-flow user manual (version: 3.15. 34158): Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments
,”
2014
.
38.
L.
Van Rijn
,
D.
Walstra
, and
M.
Van Ormondt
, “
Description of transpor 2004 (tr2004) and implementation in delft3d online
,”
Report No. Z3748
,
2004
.
39.
R. L.
Soulsby
,
L.
Hamm
,
G.
Klopman
,
D.
Myrhaug
,
R. R.
Simons
, and
G. P.
Thomas
, “
Wave-current interaction within and outside the bottom boundary layer
,”
Coastal Eng.
21
,
41
(
1993
).
40.
K.
Matsumoto
,
T.
Takanezawa
, and
M.
Ooe
, “
Ocean tide models developed by assimilating topex/poseidon altimeter data into hydrodynamical model: A global model and a regional model around Japan
,”
J. Oceanogr.
56
,
567
(
2000
).
41.
C.
Kuang
,
F.
Zhao
,
H.
Song
,
J.
Gu
, and
Z.
Dong
, “
Morphological responses of a long-narrow estuary to a restoration scheme and a major storm
,”
Mar. Geol.
427
,
106224
(
2020
).
42.
S.
Fagherazzi
,
D. A.
Edmonds
,
W.
Nardin
,
N.
Leonardi
,
A.
Canestrelli
,
F.
Falcini
,
D. J.
Jerolmack
,
G.
Mariotti
,
J. C.
Rowland
, and
R. L.
Slingerland
, “
Dynamics of river mouth deposits
,”
Rev. Geophys.
53
,
642
, https://doi.org/10.1002/2014RG000451 (
2015
).
43.
C.
Vella
,
T.-J.
Fleury
,
G.
Raccasi
,
M.
Provansal
,
F.
Sabatier
, and
M.
Bourcier
, “
Evolution of the Rhône delta plain in the Holocene
,”
Mar. Geol.
222–223
,
235
(
2005
).
You do not currently have access to this content.