Harnessing wave energy stands as a promising method to mitigate carbon dioxide emissions and address the global energy shortage. The strategic placement of wave energy converters (WECs) in offshore areas is contingent upon the distinctive features of the coastline and the topographical layout. This study is dedicated to scrutinizing the hydrodynamic characteristics and the wave energy absorption of a periodic array of flap-type WECs situated on a stepped bottom topography, strategically positioned in front of a straight coast. The coastline is modeled as a fully reflecting vertical wall. To analyze the oblique wave interaction with this system, we have developed a semi-analytical solution grounded in the linear potential flow theory. We evaluated key performance metrics, including hydrodynamic efficiency, reflection coefficient, wave excitation torque, added inertia torque, and radiation damping. Case studies were conducted to assess the impacts of varying parameters, such as the distance between the flap and the wall, the wave depth above the step, the incident angle, and the step length on the hydrodynamic performance of the current system. The results underscore the substantial influence of the distance between the flap and the coastal wall on wave power efficiency. The trigger condition's frequency downshift, indicative of the standing wave field between the flap and the coastal wall, is observed with a reduction in the wave depth above the step, in contrast to scenarios without the step. In addition, wave resonance above the stepped bottom topography amplifies wave power extraction, albeit with the caveat of a diminished hydrodynamic efficiency due to the presence of Rayleigh–Bloch waves.

1.
Babarit
,
A.
, “
On the park effect in arrays of oscillating wave energy converters
,”
Renewable Energy
58
,
68
78
(
2013
).
2.
Cheng
,
Y.
,
Xi
,
C.
,
Dai
,
S. S.
,
Ji
,
C. Y.
, and
Cocard
,
M.
, “
Wave energy extraction for an array of dual-oscillating wave surge converter with different layouts
,”
Appl. Energy
292
,
116899
(
2021
).
3.
Dalrymple
,
R. A.
and
Martin
,
P. A.
, “
Wave diffraction through offshore breakwaters
,”
J. Waterw. Port Coastal Ocean Eng.
116
(
6
),
727
741
(
1990
).
4.
de O. Falcão
,
A. F.
, “
Wave-power absorption by a periodic linear array of oscillating water columns
,”
Ocean Eng.
29
,
1163
1186
(
2002
).
5.
Evans
,
D. V.
and
Porter
,
R.
, “
Trapped modes embedded in the continuous spectrum
,”
Q. J. Mech. Appl. Math.
51
(
2
),
263
274
(
1998
).
6.
Falcã
,
D. O.
, “
Wave energy utilization: A review of the technologies
,”
Renewable Sustainable Energy Rev.
14
(
3
),
899
918
(
2010
).
7.
Falnes
,
J.
and
Kurniawan
,
A.
,
Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction
(
Cambridge University Press
,
2020
).
8.
Fernyhough
,
M.
and
Evans
,
D. V.
, “
Scattering by periodic array of rectangular blocks
,”
J. Fluid Mech.
305
,
263
279
(
1995
).
9.
Kara
,
F.
, “
Hydrodynamic performances of wave energy converter arrays in front of a vertical wall
,”
Ocean Eng.
235
,
109459
(
2021
).
10.
Kara
,
F.
, “
Effects of a vertical wall on wave power absorption with wave energy converters arrays
,”
Renewable Energy
196
,
812
823
(
2022
).
11.
Khan
,
M. B. M.
and
Behera
,
H.
, “
Impact of sloping porous seabed on the efficiency of an OWC against oblique waves
,”
Renewable Energy
173
,
1027
1039
(
2021
).
12.
Li
,
J.
and
Liu
,
Y.
, “
Hydrodynamic performance and energy absorption of multiple spherical absorbers along a straight coast
,”
Phys. Fluids
34
,
117102
(
2022
).
13.
Li
,
J.
,
Liu
,
Y.
, and
Wang
,
X. Y.
, “
Hydrodynamic performance of a horizontal cylinder wave energy converter in front of a partially reflecting vertical wall
,”
Renewable Energy
194
,
1034
1047
(
2022
).
14.
Liu
,
Y.
,
Li
,
Y. C.
, and
Teng
,
B.
, “
Interaction between oblique waves and perforated caisson breakwaters with perforated partition walls
,”
Eur. J. Mech. -B/Fluids
56
,
143
155
(
2016
).
15.
Magkouris
,
A.
,
Bonovas
,
M.
, and
Belibassakis
,
K.
, “
Hydrodynamic analysis of surge-type wave energy devices in variable bathymetry by means of BEM
,”
Fluids
5
(
2
),
99
(
2020
).
16.
Maniar
,
H. D.
and
Newman
,
J. N.
, “
Wave diffraction by a long array of cylinders
,”
J. Fluid Mech.
339
,
309
330
(
2000
).
17.
Michele
,
S.
,
Sammarco
,
P.
, and
D'Errico
,
M.
, “
The optimal design of a flap gate array in front of a straight vertical wall: Resonance of the natural modes and enhancement of the exciting torque
,”
Ocean Eng.
118
,
152
164
(
2016
).
18.
Mohapatra
,
K.
and
Sahoo
,
T.
, “
Numerical investigation of diffraction and radiation of surface gravity waves by a rectangular structure over a stepped bottom with and without a vertical wall
,”
Ocean Eng.
266
(
Part 4
),
113007
(
2022
).
19.
Mohapatra
,
P.
,
Vijay
,
K. G.
,
Bhattacharyya
,
A.
, and
Sahoo
,
T.
, “
Influence of distinct bottom geometries on the hydrodynamic performance of an OWC device
,”
Energy
277
,
127605
(
2023
).
20.
Naik
,
N.
,
Gayathri
,
R.
,
Behera
,
H.
, and
Tsai
,
C.-C.
, “
Wave power extraction by a dual OWC chambers over an undulated bottom
,”
Renewable Energy
216
,
119026
(
2023a
).
21.
Naik
,
N.
,
Zheng
,
S. M.
, and
Behera
,
H.
, “
Role of dual breakwaters and trenches on efficiency of an oscillating water column
,”
Phys. Fluids
35
,
047115
(
2023b
).
22.
Ning
,
D. Z.
,
Ke
,
S.
,
Mayon
,
R.
, and
Zhang
,
C. W.
, “
Numerical investigation on hydrodynamic performance of an OWC wave energy device in the stepped bottom
,”
Front. Energy Res.
7
,
152
(
2019
).
23.
Renzi
,
E.
,
Abdolali
,
A.
,
Bellotti
,
G.
, and
Dias
,
F.
, “
Wave-power absorption from a finite array of oscillating wave surge converters
,”
Renewable Energy
63
,
55
68
(
2014
).
24.
Renzi
,
E.
and
Dias
,
F.
, “
Resonant behaviour of an oscillating wave energy converter in a channel
,”
J. Fluid Mech.
701
,
482
510
(
2012
).
25.
Renzi
,
E.
and
Dias
,
F.
, “
Relations for a periodic array of flap-type wave energy converters
,”
Appl. Ocean Res.
39
,
31
39
(
2013
).
26.
Rezanejad
,
K.
,
Bhattacharjee
,
J.
, and
Guedes Soares
,
C.
, “
Stepped sea bottom effects on the efficiency of nearshore oscillating water column device
,”
Ocean Eng.
70
,
25
38
(
2013
).
27.
Rezanejad
,
K.
,
Gadelho
,
J. F. M.
, and
Guedes Soares
,
C.
, “
Hydrodynamic analysis of an oscillating water column wave energy converter in the stepped bottom condition using CFD
,”
Renewable Energy
135
,
1241
1259
(
2019
).
28.
Saeidtehrani
,
S.
and
Karimirad
,
M.
, “
Multipurpose breakwater: Hydrodynamic analysis of flap-type wave energy converter array integrated to a breakwater
,”
Ocean Eng.
235
,
109426
(
2021
).
29.
Sammarco
,
P.
,
Michele
,
S.
, and
d'Errico
,
M.
, “
Flap gate farm: From Venice lagoon defense to resonating wave energy production. I. Natural modes
,”
Appl. Ocean Res.
43
,
206
213
(
2013
).
30.
Sarkar
,
D.
,
Renzi
,
E.
, and
Dias
,
F.
, “
Effect of a straight coast on the hydrodynamics and performance of the oscillating wave surge converter
,”
Ocean Eng.
105
,
25
32
(
2015
).
31.
Tay
,
Z. Y.
and
Venugopal
,
V.
, “
Hydrodynamic interactions of oscillating wave surge converters in an array under random sea state
,”
Ocean Eng.
145
,
382
394
(
2017
).
32.
Teixeira-Duarte
,
F.
,
Clemente
,
D.
,
Giannini
,
G.
,
Rosa-Santos
,
P.
, and
Taveira-Pinto
,
F.
, “
Review on layout optimization strategies of offshore parks for wave energy converters
,”
Renewable Sustainable Energy Rev.
163
,
112513
(
2022
).
33.
Tokić
,
G.
and
Yue
,
D. K. P.
, “
Hydrodynamics of periodic wave energy converter arrays
,”
J. Fluid Mech.
862
,
34
74
(
2019
).
34.
Tokić
,
G.
and
Yue
,
D. K. P.
, “
Axisymmetric reflectors in wave energy converter arrays: Harnessing scattering to increase energy extraction
,”
Phys. Fluids
35
(
6
),
067120
(
2023
).
35.
Trivedi
,
K.
and
Koley
,
S.
, “
Mathematical modeling of oscillating water column wave energy converter devices placed over an undulated seabed in a two-layer fluid system
,”
Renewable Energy
216
,
119092
(
2023
).
36.
Wang
,
C.
,
Zheng
,
S. M.
, and
Zhang
,
Y. L.
, “
A heaving system with two separated oscillating water column units for wave energy conversion
,”
Phys. Fluids
34
,
047103
(
2022
).
37.
Wang
,
D. J.
,
Katory
,
M.
, and
Li
,
Y. S.
, “
Analytical and experimental investigation on the hydrodynamic performance of onshore wave-power devices
,”
Ocean Eng.
29
(
8
),
871
885
(
2002
).
38.
Wang
,
X. Y.
,
Liu
,
Y.
, and
Lu
,
L.
, “
Analytical solution of oblique wave interacting with a periodic array of specific caissons connected with partially immersed thin walls (comb-type)
,”
Ocean Eng.
186
,
106107
(
2019
).
39.
Zhang
,
Y.
,
Li
,
M. W.
,
Zhao
,
X. L.
, and
Chen
,
L. F.
, “
The effect of the coastal reflection on the performance of a floating breakwater-WEC system
,”
Appl. Ocean Res.
100
,
102117
(
2020
).
40.
Zhang
,
Y.
,
Zhao
,
X. L.
,
Geng
,
J.
,
Göteman
,
M.
, and
Tao
,
L. B.
, “
Wave power extraction and coastal protection by a periodic array of oscillating buoys embedded in a breakwater
,”
Renewable Energy
190
,
434
456
(
2022
).
41.
Zhang
,
Y. X.
,
Zhao
,
Y. J.
,
Sun
,
W.
, and
Li
,
J. X.
, “
Ocean wave energy converters: Technical principle, device realization, and performance evaluation
,”
Renewable Sustainable Energy Rev.
141
,
110764
(
2021
).
42.
Zhang
,
Y.
,
Zhu
,
W. J.
, and
Cheng
,
X. F.
, “
Wave power extraction of flap-type wave energy converter array mounted at the stepped bottom topography
,”
Renewable Energy
218
,
119334
(
2023
).
43.
Zhao
,
X. L.
,
Du
,
X.
,
Li
,
M. W.
, and
Göteman
,
M.
, “
Semi-analytical study on the hydrodynamic performance of an interconnected floating breakwater-WEC system in presence of the seawall
,”
Appl. Ocean Res.
109
,
102555
(
2021
).
44.
Zhao
,
X. L.
,
Ning
,
D. Z.
, and
Liang
,
D. F.
, “
Experimental investigation on hydrodynamic performance of a breakwater-integrated WEC system
,”
Ocean Eng.
171
,
25
32
(
2019
).
45.
Zhao
,
X. L.
,
Zou
,
Q. P.
,
Geng
,
J.
,
Zhang
,
Y.
, and
Wang
,
Z. J.
, “
Influences of wave resonance on hydrodynamic efficiency and loading of an OWC array under oblique waves
,”
Appl. Ocean Res.
120
,
103069
(
2022
).
46.
Zheng
,
S. M.
,
Antonini
,
A.
,
Zhang
,
Y. L.
,
Greaves
,
D.
,
Miles
,
J.
, and
Iglesias
,
G.
, “
Wave power extraction from multiple oscillating water columns along a straight coast
,”
J. Fluid Mech.
878
,
445
480
(
2019
).
47.
Zhou
,
Z.
,
Wang
,
Y.
,
Zheng
,
Z.
,
Jin
,
P.
, and
Ning
,
D. Z.
, “
Power generation and wave attenuation of a hybrid system involving a heaving cylindrical wave energy converter in front of a parabolic breakwater
,”
Energy
282
,
128364
(
2023
).
48.
Zhu
,
G. X.
,
Samuel
,
J.
,
Zheng
,
S. M.
,
Hughes
,
J.
,
Simmonds
,
D.
, and
Greaves
,
D.
, “
Numerical investigation on the hydrodynamic performance of a 2D U-shaped oscillating water column wave energy converter
,”
Energy
274
,
127357
(
2023
).
You do not currently have access to this content.