The sound barrier is an important means to reduce noise caused by traveling vehicles on roads or railways. Structural design and optimization of the sound barrier can effectively reduce the use of materials and improve the noise reduction effect. In this paper, a new isogeometric singular boundary method is proposed and applied to the shape optimization of sound barriers. The geometric structure is accurately represented by using non-uniform rational B-splines. The acoustic shape sensitivity of the control points was calculated using the direct differentiation method and the adjoint variable method. After that, the method of moving asymptotes is adopted as an optimizer to search for the optimal layout of the design objective. In the numerical procedure, the shoelace formula is introduced to calculate the area of the closed structure, which only uses the discrete node information on the boundary. The proposed approach completely avoids the mesh division in the finite element method as well as the singular integral calculation in the boundary element method. More importantly, it can be seamlessly connected with the computer-aided design system for the subsequent treatment by engineers. Three numerical examples are provided to illustrate the accuracy and effectiveness of the proposed isogeometric method. This work provides a simple and effective way for the structural optimization design of sound barriers.

1.
D. N.
May
and
N. M.
Osman
, “
Highway noise barriers: New shapes
,”
J. Sound Vib.
71
,
73
(
1980
).
2.
T.
Ishizuka
and
K.
Fujiwara
, “
Performance of noise barriers with various edge shapes and acoustical conditions
,”
Appl. Acoust.
65
,
125
(
2004
).
3.
R.
Toledo
,
J.
Aznárez
,
D.
Greiner
, and
O.
Maeso
, “
Shape design optimization of road acoustic barriers featuring top-edge devices by using genetic algorithms and boundary elements
,”
Eng. Anal. Boundary Elem.
63
,
49
(
2016
).
4.
D.
Greiner
,
J. J.
Aznárez
,
O.
Maeso
, and
G.
Winter
, “
Single-and multi-objective shape design of Y-noise barriers using evolutionary computation and boundary elements
,”
Adv. Eng. Software
41
,
368
(
2010
).
5.
M.
Baulac
,
J.
Defrance
, and
P.
Jean
, “
Optimisation with genetic algorithm of the acoustic performance of T-shaped noise barriers with a reactive top surface
,”
Appl. Acoust.
69
,
332
(
2008
).
6.
M.
Karimi
and
D.
Younesian
, “
Optimized T-shape and Y-shape inclined sound barriers for railway noise mitigation
,”
J. Low Freq. Noise, Vib. Act. Control
33
,
357
(
2014
).
7.
S.
Grubeša
,
I.
Djurek
, and
A.
Petošić
, “
Combination of boundary element method and genetic algorithm for optimization of T-shape noise barrier
,”
Tehnički vjesnik
28
,
77
(
2021
).
8.
T. J. R.
Hughes
,
J. A.
Cottrell
, and
Y.
Bazilevs
, “
Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
,”
Comput. Methods Appl. Mech. Eng.
194
,
4135
(
2005
).
9.
M.
Mandal
and
J. H.
Shaikh
, “
Weakly viscous two-dimensional incompressible fluid flows using efficient isogeometric finite element method
,”
Phys. Fluids
35
,
103611
(
2023
).
10.
J.
Yan
,
S.
Lin
,
Y.
Bazilevs
, and
G.
Wagner
, “
Isogeometric analysis of multi-phase flows with surface tension and with application to dynamics of rising bubbles
,”
Comput. Fluids
179
,
777
(
2019
).
11.
K.
Takizawa
,
Y.
Bazilevs
, and
T. E.
Tezduyar
, “
Isogeometric discretization methods in computational fluid mechanics
,”
Math. Models Methods Appl. Sci.
32
,
2359
(
2022
).
12.
J. V.
Venås
and
T.
Kvamsdal
, “
Isogeometric analysis of acoustic scattering with perfectly matched layers (IGAPML)
,”
Comput. Methods Appl. Mech. Eng.
401
,
115647
(
2022
).
13.
N. P.
Khanyile
,
A.
Alia
,
P.
Dufrénoy
, and
G.
De Saxcé
, “
Acoustic radiation simulation of forced vibrating plates using isogeometric analysis
,”
J. Acoust. Soc. Am.
152
,
524
(
2022
).
14.
S.
Thai
,
V. X.
Nguyen
, and
Q. X.
Lieu
, “
Bending and free vibration analyses of multi-directional functionally graded plates in thermal environment: A three-dimensional isogeometric analysis approach
,”
Compos. Struct.
295
,
115797
(
2022
).
15.
E.
Mahrous
,
R.
Valéry Roy
,
A.
Jarauta
, and
M.
Secanell
, “
A three-dimensional numerical model for the motion of liquid drops by the particle finite element method
,”
Phys. Fluids
34
,
052120
(
2022
).
16.
D.
Lopes
,
R.
Agujetas
,
H.
Puga
,
J.
Teixeira
,
R.
Lima
,
J.
Alejo
, and
C.
Ferrera
, “
Analysis of finite element and finite volume methods for fluid-structure interaction simulation of blood flow in a real stenosed artery
,”
Int. J. Mech. Sci.
207
,
106650
(
2021
).
17.
M.
Herreros
and
S.
Ligüérzana
, “
Rigid body motion in viscous flows using the finite element method
,”
Phys. Fluids
32
,
123311
(
2020
).
18.
Q.
Gui
,
W.
Li
, and
Y.
Chai
, “
The enriched quadrilateral overlapping finite elements for time-harmonic acoustics
,”
Appl. Math. Comput.
451
,
128018
(
2023
).
19.
K.
Panduranga
,
S.
Koley
, and
M. H.
Meylan
, “
A hybrid boundary element method based model for wave interaction with submerged viscoelastic plates with an arbitrary bottom profile in frequency and time domain
,”
Phys. Fluids
35
,
047114
(
2023
).
20.
W.
Zhao
,
L.
Chen
,
C.
Zheng
,
C.
Liu
, and
H.
Chen
, “
Design of absorbing material distribution for sound barrier using topology optimization
,”
Struct. Multidiscip. Optim.
56
,
315
(
2017
).
21.
J. C.
Padrino
,
J. E.
Sprittles
, and
D. A.
Lockerby
, “
Efficient simulation of rarefied gas flow past a particle: A boundary element method for the linearized G13 equations
,”
Phys. Fluids
34
,
062011
(
2022
).
22.
A.
Langins
,
A. P.
Stikuts
, and
A.
Cēbers
, “
A three-dimensional boundary element method algorithm for simulations of magnetic fluid droplet dynamics
,”
Phys. Fluids
34
,
062105
(
2022
).
23.
Z.
Chen
and
L.
Sun
, “
A boundary meshless method for dynamic coupled thermoelasticity problems
,”
Appl. Math. Lett.
134
,
108305
(
2022
).
24.
F.
Wang
,
Y.
Gu
,
W.
Qu
, and
C.
Zhang
, “
Localized boundary knot method and its application to large-scale acoustic problems
,”
Comput. Methods Appl. Mech. Eng.
361
,
112729
(
2020
).
25.
Z.
Chen
and
F.
Wang
, “
Localized method of fundamental solutions for acoustic analysis inside a car cavity with sound-absorbing material
,”
Adv. Appl. Math. Mech.
15
,
182
(
2022
).
26.
C.
Anitescu
,
E.
Atroshchenko
,
N.
Alajlan
, and
T.
Rabczuk
, “
Artificial neural network methods for the solution of second order boundary value problems
,”
Comput., Mater. Continua
59
,
345
(
2019
).
27.
E.
Samaniego
,
C.
Anitescu
,
S.
Goswami
,
V. M.
Nguyen-Thanh
,
H.
Guo
,
K.
Hamdia
,
X.
Zhuang
, and
T.
Rabczuk
, “
An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
,”
Comput. Methods Appl. Mech. Eng.
362
,
112790
(
2020
).
28.
S.
Jiang
,
W.
Deng
,
E. T.
Ooi
,
L.
Sun
, and
C.
Du
, “
Data-driven algorithm based on the scaled boundary finite element method and deep learning for the identification of multiple cracks in massive structures
,”
Comput. Struct.
291
,
107211
(
2024
).
29.
L.
Qiu
,
X.
Ma
, and
Q.-H.
Qin
, “
A novel meshfree method based on spatio-temporal homogenization functions for one-dimensional fourth-order fractional diffusion-wave equations
,”
Appl. Math. Lett.
142
,
108657
(
2023
).
30.
W.
Zhan
,
H.
Zhao
,
X.
Rao
, and
Y.
Liu
, “
Generalized finite difference method-based numerical modeling of oil–water two-phase flow in anisotropic porous media
,”
Phys. Fluids
35
,
103317
(
2023
).
31.
X.
Liang
,
A.
Li
,
A. D.
Rollett
, and
Y. J.
Zhang
, “
An isogeometric analysis-based topology optimization framework for 2D cross-flow heat exchangers with manufacturability constraints
,”
Eng. Comput.
38
,
4829
(
2022
).
32.
L.
Chen
,
C.
Liu
,
W.
Zhao
, and
L.
Liu
, “
An isogeometric approach of two dimensional acoustic design sensitivity analysis and topology optimization analysis for absorbing material distribution
,”
Comput. Methods Appl. Mech. Eng.
336
,
507
(
2018
).
33.
L.
Chen
,
Z.
Wang
,
H.
Lian
,
Y.
Ma
,
Z.
Meng
,
P.
Li
,
C.
Ding
, and
S. P.
Bordas
, “
Reduced order isogeometric boundary element methods for CAD-integrated shape optimization in electromagnetic scattering
,”
Comput. Methods Appl. Mech. Eng.
419
,
116654
(
2024
).
34.
C.
Liu
,
L.
Chen
,
W.
Zhao
, and
H.
Chen
, “
Shape optimization of sound barrier using an isogeometric fast multipole boundary element method in two dimensions
,”
Eng. Anal. Boundary Elem.
85
,
142
(
2017
).
35.
J.
Li
,
L.
Zhang
,
S.
Cai
, and
N.
Li
, “
Regularized singular boundary method for calculating wave forces on three-dimensional large offshore structure
,”
Appl. Math. Lett.
149
,
108931
(
2024
).
36.
W.
Chen
, “
Singular boundary method: A novel, simple, meshfree, boundary collocation numerical method
,”
Chin. J. Solid Mech.
30
,
592
(
2009
).
37.
L.
Lan
,
S.
Cheng
,
X.
Sun
,
W.
Li
,
C.
Yang
, and
F.
Wang
, “
A fast singular boundary method for the acoustic design sensitivity analysis of arbitrary two-and three-dimensional structures
,”
Mathematics
10
,
3817
(
2022
).
38.
S.
Cheng
,
F.
Wang
,
P.-W.
Li
, and
W.
Qu
, “
Singular boundary method for 2D and 3D acoustic design sensitivity analysis
,”
Comput. Methods Appl. Mech. Eng.
119
,
371
(
2022
).
39.
H.
Liu
,
F.
Wang
,
L.
Qiu
, and
C.
Chi
, “
Acoustic simulation using singular boundary method based on loop subdivision surfaces: A seamless integration of CAD and CAE
,”
Eng. Anal. Boundary Elem.
158
,
97
(
2024
).
40.
L.
Chen
,
J.
Zhao
,
H.
Lian
,
B.
Yu
,
E.
Atroshchenko
, and
P.
Li
, “
A BEM broadband topology optimization strategy based on Taylor expansion and SOAR method-application to 2D acoustic scattering problems
,” Int. J.
Numer. Methods Eng.
124
,
5151
(
2023
).
41.
Z.
Fu
,
Q.
Xi
,
Y.
Gu
,
J.
Li
,
W.
Qu
,
L.
Sun
,
X.
Wei
,
F.
Wang
,
J.
Lin
,
W.
Li
,
W.
Xu
, and
C.
Zhang
, “
Singular boundary method: A review and computer implementation aspects
,”
Eng. Anal. Boundary Elem.
147
,
231
(
2023
).
42.
H.
Liu
,
F.
Wang
, and
C.
Zhang
, “
Performance analysis and material distribution optimization for sound barriers using a semianalytical meshless method
,”
Int. J. Mech. Syst. Dyn.
3
,
331
(
2023
).
43.
Z.-J.
Fu
,
W.
Chen
, and
Y.
Gu
, “
Burton-Miller-type singular boundary method for acoustic radiation and scattering
,”
J. Sound Vib.
333
,
3776
(
2014
).
44.
X.
Wei
,
C. S. R.
Rao
,
S.
Chen
, and
W. J.
Luo
, “
Numerical simulation of anti-plane wave propagation in heterogeneous media
,”
Appl. Math. Lett.
135
,
108436
(
2022
).
45.
H.
Liu
and
F.
Wang
, “
A novel semi-analytical meshless method for the thickness optimization of porous material distributed on sound barriers
,”
Appl. Math. Lett.
147
,
108844
(
2024
).
46.
S.
Cheng
,
F.
Wang
,
G.
Wu
, and
C.
Zhang
, “
A semi-analytical and boundary-type meshless method with adjoint variable formulation for acoustic design sensitivity analysis
,”
Appl. Math. Lett.
131
,
108068
(
2022
).
47.
B.
Braden
, “
The surveyor's area formula
,”
Coll. Math. J.
17
,
326
(
1986
).
48.
A. M.
Shaaban
,
C.
Anitescu
,
E.
Atroshchenko
, and
T.
Rabczuk
, “
Shape optimization by conventional and extended isogeometric boundary element method with PSO for two-dimensional Helmholtz acoustic problems
,”
Eng. Anal. Boundary Elem.
113
,
156
(
2020
).
49.
R.
Barbieri
and
N.
Barbieri
, “
Acoustic horns optimization using finite elements and genetic algorithm
,”
Appl. Acoust.
74
,
356
(
2013
).
50.
E.
Bängtsson
,
D.
Noreland
, and
M.
Berggren
, “
Shape optimization of an acoustic horn
,”
Comput. Methods Appl. Mech. Eng.
192
,
1533
(
2003
).
You do not currently have access to this content.