Radial extracorporeal shockwave therapy (rESWT) is a noninvasive medical technique that treats a range of musculoskeletal conditions. To understand its biological effects and develop personalized treatment plans, it is crucial to fully characterize the acoustic field that rESWT generates. This study presents a quantitative assessment of rESWT's acoustic field, achieved through experiments and simulations. The study measures the acoustic fields using a needle-type hydrophone under different machine settings and establishes and calibrates a computational model based on the experimental measurements. The study also determines the spatial distributions of peak pressure and energy flux density for different driving pressures. High-speed photography is used to visualize cavitation bubbles, which correspond to the negative pressure distribution. The study finds that the axial pressure distribution is similar to the acoustic radiation from an oscillating circular piston, whereas the radial pressure distribution cannot be described by acoustic radiation. Furthermore, the study develops a machine learning model that predicts positive pressure distributions for continuous driving pressure. Overall, this study expands our understanding of the acoustic fields generated by rESWT and provides quantitative information to explore underlying biological mechanisms and determine personalized treatment approaches.

1.
C.
Chaussy
,
F.
Eisenberger
, and
B.
Forssmann
, “
Extracorporeal shockwave lithotripsy (ESWL): A chronology
,”
J. Endourol.
21
,
1249
1254
(
2007
).
2.
M.
Yin
,
J.
Ye
,
M.
Yao
,
X.
Cui
,
Y.
Xia
,
Q.
Shen
,
Z.
Tong
,
X.
Wu
,
J.
Ma
, and
W.
Mo
, “
Is extracorporeal shock wave therapy clinical efficacy for relief of chronic, recalcitrant plantar fasciitis? A systematic review and meta-analysis of randomized placebo or active-treatment controlled trials
,”
Arch. Phys. Med. Rehabil.
95
,
1585
1593
(
2014
).
3.
C.
Speed
, “
Extracorporeal shock wave therapy for lateral epicondylitis—A double blind randomized controlled trial
,”
J. Orthop. Res.
21
,
961
(
2003
).
4.
V.
Avancini-Dobrović
,
L.
Frlan-Vrgoč
,
D.
Stamenković
,
I.
Pavlović
, and
T.
Schnurrer-Luke Vrbanić
, “
Radial extracorporeal shock wave therapy in the treatment of shoulder calcific tendinitis
,”
Coll. Antropol.
35
,
221
225
(
2011
), available at https://pubmed.ncbi.nlm.nih.gov/22220440.
5.
F.
Gao
,
W.
Sun
,
Z.
Li
,
W.
Guo
,
W.
Wang
,
L.
Cheng
,
B.
Wang
et al, “
High-energy extracorporeal shock wave for early stage osteonecrosis of the femoral head: A single-center case series
,”
Evidence-Based Comp. Altern. Med.
2015
,
468090
.
6.
J. P.
Furia
, “
High-energy extracorporeal shock wave therapy as a treatment for chronic noninsertional Achilles tendinopathy
,”
Am. J. Sports Med.
36
,
502
508
(
2008
).
7.
V.
Valchanou
and
P.
Michailov
, “
High energy shock waves in the treatment of delayed and nonunion of fractures
,”
Int. Orthop.
15
,
181
184
(
1991
).
8.
V.
Auersperg
and
K.
Trieb
, “
Extracorporeal shock wave therapy: An update
,”
EFORT Open Rev.
5
,
584
592
(
2020
).
9.
R.
Meirer
,
A.
Brunner
,
M.
Deibl
,
M.
Oehlbauer
,
H.
Piza-Katzer
, and
F. S.
Kamelger
, “
Shock wave therapy reduces necrotic flap zones and induces VEGF expression in animal epigastric skin flap model
,”
J. Reconstr. Microsurg.
23
,
231
236
(
2007
).
10.
R.
Meirer
,
G.
Huemer
,
M.
Oehlbauer
,
S.
Wanner
,
H.
Piza-Katzer
, and
F.
Kamelger
, “
Comparison of the effectiveness of gene therapy with vascular endothelial growth factor or shock wave therapy to reduce ischaemic necrosis in an epigastric skin flap model in rats
,”
J. Plast. Reconstr. Aesthetic Surg.
60
,
266
271
(
2007
).
11.
C.-J.
Wang
,
F.-S.
Wang
,
K. D.
Yang
,
L.-H.
Weng
,
C.-C.
Hsu
,
C.-S.
Huang
, and
L.-C.
Yang
, “
Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits
,”
J. Orthop. Res.
21
,
984
989
(
2003
).
12.
C.-J.
Wang
,
Y.-C.
Sun
,
T.
Wong
,
S.-L.
Hsu
,
W.-Y.
Chou
, and
H.-W.
Chang
, “
Extracorporeal shockwave therapy shows time-dependent chondroprotective effects in osteoarthritis of the knee in rats
,”
J. Surg. Res.
178
,
196
205
(
2012
).
13.
C.-J.
Wang
, “
An overview of shock wave therapy in musculoskeletal disorders
,”
Chang Gung Med. J.
26
,
220
232
(
2003
), available at https://pubmed.ncbi.nlm.nih.gov/12846521.
14.
K.
Ito
,
Y.
Fukumoto
, and
H.
Shimokawa
, “
Extracorporeal shock wave therapy as a new and non-invasive angiogenic strategy
,”
Tohoku J. Exp. Med.
219
,
1
9
(
2009
).
15.
S.
Mariotto
,
E.
Cavalieri
,
E.
Amelio
,
A. R.
Ciampa
,
A. C.
de Prati
,
E.
Marlinghaus
,
S.
Russo
, and
H.
Suzuki
, “
Extracorporeal shock waves: From lithotripsy to anti-inflammatory action by no production
,”
Nitric Oxide
12
,
89
96
(
2005
).
16.
C.
Perez
,
H.
Chen
,
T. J.
Matula
,
M.
Karzova
, and
V. A.
Khokhlova
, “
Acoustic field characterization of the Duolith: Measurements and modeling of a clinical shock wave therapy device
,”
J. Acoust. Soc. Am.
134
,
1663
1674
(
2013
).
17.
P. V.
Chitnis
and
R. O.
Cleveland
, “
Acoustic and cavitation fields of shock wave therapy devices
,”
AIP Conf. Proc.
829
,
440
444
(
2006
).
18.
M. J.
Choi
and
O.
Kwon
, “
Temporal and spectral characteristics of the impulsive waves produced by a clinical ballistic shock wave therapy device
,”
Ultrasonics
110
,
106238
(
2021
).
19.
G.
Cosoli
,
L.
Verdenelli
, and
L.
Scalise
, “
Metrological characterization of therapeutic devices for pressure wave therapy: Force, energy density, and waveform evaluation
,”
IEEE Trans. Instrum. Meas.
70
,
4000708
(
2021
).
20.
N.
Reinhardt
,
J.
Wegenaer
, and
M.
de la Fuente
, “
Influence of the pulse repetition rate on the acoustic output of ballistic pressure wave devices
,”
Sci. Rep.
12
,
18060
(
2022
).
21.
F.
Ueberle
and
A. J.
Rad
, “
Ballistic pain therapy devices: Measurement of pressure pulse parameters
,”
Biomed. Eng./Biomed. Tech.
57
,
700
703
(
2012
).
22.
F.
Ueberle
, “
Measurement parameters for the characterization of unfocused extracorporeal pressure pulse sources-standardization of biomedical equipment
,” in
Proceedings of the 23rd International Congress on Acoustics
(
Universitätsbibliothek der RWTH Aachen
,
2019
).
23.
R. O.
Cleveland
,
P. V.
Chitnis
, and
S. R.
McClure
, “
Acoustic field of a ballistic shock wave therapy device
,”
Ultrasound Med. Biol.
33
,
1327
1335
(
2007
).
24.
N. B.
Császár
,
N. B.
Angstman
,
S.
Milz
,
C. M.
Sprecher
,
P.
Kobel
,
M.
Farhat
,
J. P.
Furia
, and
C.
Schmitz
, “
Radial shock wave devices generate cavitation
,”
PLoS ONE
10
,
e0140541
(
2015
).
25.
P.
Huber
,
K.
Jöchle
, and
J.
Debus
, “
Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter
,”
Phys. Med. Biol.
43
,
3113
(
1998
).
26.
M.
Khavari
,
A.
Priyadarshi
,
A.
Hurrell
,
K.
Pericleous
,
D.
Eskin
, and
I.
Tzanakis
, “
Characterization of shock waves in power ultrasound
,”
J. Fluid Mech.
915
,
R3
(
2021
).
27.
Y. A.
Pishchalnikov
,
O. A.
Sapozhnikov
,
M. R.
Bailey
,
I. V.
Pishchalnikova
,
J. C.
Williams
, Jr.
, and
J. A.
McAteer
, “
Cavitation selectively reduces the negative-pressure phase of lithotripter shock pulses
,”
Acoust. Res. Lett. Online
6
,
280
286
(
2005
).
28.
N.
Reinhardt
,
K.
Dietz-Laursonn
,
M.
Janzen
,
K.
Radermacher
,
C.
Bach
,
K.
Radermacher
, and
M. D. L.
Fuente
, “
Experimental setup for evaluation of cavitation effects in ESWL
,”
Curr. Directions Biomed. Eng.
4
,
191
194
(
2018
).
29.
A. D.
Maxwell
,
C. A.
Cain
,
T. L.
Hall
,
J. B.
Fowlkes
, and
Z.
Xu
, “
Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials
,”
Ultrasound Med. Biol.
39
,
449
465
(
2013
).
30.
F.
Ueberle
and
A. J.
Rad
, “
Characterization of unfocused/weakly focused pressure pulse sources for extracorporeal pain therapy (“radial shock wave therapy” sources)
,”
Biomed. Eng./Biomed. Tech.
58
,
000010151520134130
(
2013
).
31.
Y.
Liu
,
X.
Chen
,
A.
Guo
,
S.
Liu
, and
G.
Hu
, “
Quantitative assessments of mechanical responses upon radial extracorporeal shock wave therapy
,”
Adv. Sci.
5
,
1700797
(
2018
).
32.
International Electrotechnical Commission
, “
Ultrasonics—Pressure pulse lithotripters—Characteristics of fields
,” Standard No. IEC 61846:1998 (
International Electrotechnical Commission
,
Geneva, Switzerland
,
1998
).
33.
A.
Freedman
, “
Acoustic field of a pulsed circular piston
,”
J. Sound Vib.
170
,
495
519
(
1994
).
34.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
McGraw-Hill
,
NY
,
1968
), Vol.
4
.
35.
W. P.
Rdzanek
, “
Sound radiation of a circular piston in the outlet of a finite hemispherical cavity of a finite inner impedance
,”
Acta Phys. Polon. A
90
,
17
31
(
2019
).
36.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
Princeton University Press
,
1986
).
37.
O. J.
Wess
, “
Physics and technique of shock wave lithotripsy (SWL)
,”
Urolithiasis: Basic Science and Clinical Practice
(
Springer-Verlag
,
London
,
2012
), pp.
301
311
.
38.
A. M.
Loske
, “
What are shock waves?
,” in
Urinary Tract Stone Disease
(
Springer
,
2010
), pp.
253
262
.
39.
J.
Rompe
,
C.
Kirkpatrick
,
K.
Küllmer
,
M.
Schwitalle
, and
O.
Krischek
, “
Dose-related effects of shock waves on rabbit tendo achillis: A sonographic and histological study
,”
J. Bone Joint Surg. Br.
80-B
,
546
552
(
1998
).
40.
C. L.
Simplicio
,
J.
Purita
,
W.
Murrell
,
G. S.
Santos
,
R. G.
Dos Santos
, and
J. F. S. D.
Lana
, “
Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine
,”
J. Clin. Orthop. Trauma
11
,
S309
S318
(
2020
).
You do not currently have access to this content.