When exposed to an ascending flow, pendant drops oscillate at magnitudes determined by windspeed, drop diameter, and needle diameter. In this study, we investigate the retention stability and oscillations of pendant drops in a vertical wind tunnel. Oscillation is captured by a high-speed camera for a drop Reynolds number Re = 200–3000. Drops at Re  1000 oscillate up to 12 times the frequency of drops with high Re. Increasing windspeed enables larger volume drops to remain attached to the needles above Re = 500. We categorize drop dynamics into seven behavioral modes according to the plane of rotation and deformation of shape. Video frame aggregation permits the determination of a static, characteristic shape of our highly dynamic drops. Such a shape provides a hydraulic diameter and the evaluation of the volume swept by the oscillating drops with time. The maximum swept volume per unit drop volume occurs at Re = 600, corresponding to the peak in angular velocity.

1.
M. A.
Kandadai
,
P.
Mohan
,
G.
Lin
,
A.
Butterfield
,
M.
Skliar
, and
J. J.
Magda
, “
Comparison of surfactants used to prepare aqueous perfluoropentane emulsions for pharmaceutical applications
,”
Langmuir
26
,
4655
4660
(
2010
).
2.
A.
Schmit
,
L.
Courbin
,
M.
Marquis
,
D.
Renard
, and
P.
Panizza
, “
A pendant drop method for the production of calibrated double emulsions and emulsion gels
,”
RSC Adv.
4
,
28504
28510
(
2014
).
3.
P. J.
Wilde
,
G.
Garcia-Llatas
,
M. J.
Lagarda
,
R. P.
Haslam
, and
M. M.
Grundy
, “
Oat and lipolysis: Food matrix effect
,”
Food Chem.
278
,
683
691
(
2019
).
4.
J.
Maldonado-Valderrama
,
T.
del Castillo-Santaella
,
M. J.
Gálvez-Ruiz
,
J. A.
Holgado-Terriza
, and
M. Á.
Cabrerizo-Vílchez
, “
Structure and functionality of interfacial layers in food emulsions
,” in
Food Structure and Functionality
(
Elsevier
,
2021
), pp.
1
22
.
5.
E. Y.
Arashiro
and
N. R.
Demarquette
, “
Use of the pendant drop method to measure interfacial tension between molten polymers
,”
Mat. Res.
2
,
23
32
(
1999
).
6.
N.
Zobeiry
and
C.
Duffner
, “
Measuring the negative pressure during processing of advanced composites
,”
Compos. Struct.
203
,
11
17
(
2018
).
7.
P. A.
Rühs
,
L.
Böcker
,
R. F.
Inglis
, and
P.
Fischer
, “
Studying bacterial hydrophobicity and biofilm formation at liquid–liquid interfaces through interfacial rheology and pendant drop tensiometry
,”
Colloids Surf., B
117
,
174
184
(
2014
).
8.
S. S.
Yadav
,
B. S.
Sikarwar
,
P.
Ranjan
, and
R.
Janardhanan
, “
Microfluidic system for screening disease based on physical properties of blood
,”
Bioimpacts
10
,
141
(
2019
).
9.
M. J.
Fuerstman
,
A.
Lai
,
M. E.
Thurlow
,
S. S.
Shevkoplyas
,
H. A.
Stone
, and
G. M.
Whitesides
, “
The pressure drop along rectangular microchannels containing bubbles
,”
Lab Chip
7
,
1479
1489
(
2007
).
10.
C.
Clanet
and
J.
Lasheras
, “
Transition from dripping to jetting
,”
J. Fluid Mech.
383
,
307
326
(
1999
).
11.
D.
Henderson
,
W.
Pritchard
, and
L.
Smolka
, “
On the pinch-off of a pendant drop of viscous fluid
,”
Phys. Fluids
9
,
3188
(
1997
).
12.
J. P.
Garandet
,
B.
Vinet
, and
P.
Gros
, “
Considerations on the pendant drop method: A new look at Tate's law and Harkins' correction factor
,”
J. Colloid Interface Sci.
165
,
351
354
(
1994
).
13.
L. M.
Parkinson
and
C. M.
Phan
, “
Natural vibration of an aqueous pendant drop
,”
Exp. Therm. Fluid Sci.
90
,
48
54
(
2018
).
14.
M. A.
Quetzeri-Santiago
,
I. W.
Hunter
,
D.
Van Der Meer
, and
D. F.
Rivas
, “
Impact of a microfluidic jet on a pendant droplet
,”
Soft Matter
17
,
7466
7475
(
2021
).
15.
R.
Wang
and
X.
Li
, “
On the effective surface tension of powder-derived liquid marbles
,”
Powder Technol.
367
,
608
(
2020
).
16.
E.
Bormashenko
,
A.
Musin
,
G.
Whyman
,
Z.
Barkay
,
A.
Starostin
,
V.
Valtsifer
, and
V.
Strelnikov
, “
Revisiting the surface tension of liquid marbles: Measurement of the effective surface tension of liquid marbles with the pendant marble method
,”
Colloids Surf., A
425
,
15
23
(
2013
).
17.
B.
Zhang
,
Y.
Ling
,
P.-H.
Tsai
,
A.-B.
Wang
,
S.
Popinet
, and
S.
Zaleski
, “
Short-term oscillation and falling dynamics for a water drop dripping in quiescent air
,”
Phys. Rev. Fluids
4
,
123604
(
2019
).
18.
R. J.
Kubesh
and
K. V.
Beard
, “
Laboratory measurements of spontaneous oscillations for moderate-size raindrops
,”
J. Atmos. Sci.
50
,
1089
1098
(
1993
).
19.
F.
Testik
and
A. P.
Barros
, “
Toward elucidating the microstructure of warm rainfall: A survey
,”
Rev. Geophys.
45
,
RG2003
, https://doi.org/10.1029/2005RG000182 (
2007
).
20.
M.
Szakáll
,
K.
Diehl
,
S. K.
Mitra
, and
S.
Borrmann
, “
A wind tunnel study on the shape, oscillation, and internal circulation of large raindrops with sizes between 2.5 and 7.5 mm
,”
J. Atmos. Sci.
66
,
755
765
(
2009
).
21.
M.
Szakáll
,
S.
Kessler
,
K.
Diehl
,
S. K.
Mitra
, and
S.
Borrmann
, “
A wind tunnel study of the effects of collision processes on the shape and oscillation for moderate-size raindrops
,”
Atmos. Res.
142
,
67
78
(
2014
).
22.
M.
Szakáll
and
I.
Urbich
, “
Wind tunnel study on the size distribution of droplets after collision induced breakup of levitating water drops
,”
Atmos. Res.
213
,
51
56
(
2018
).
23.
S.
Müller
,
M.
Szakáll
,
S. K.
Mitra
,
K.
Diehl
, and
S.
Borrmann
, “
Shapes and oscillations of raindrops with reduced surface tensions: Measurements at the Mainz vertical wind tunnel
,”
Atmos. Res.
119
,
38
45
(
2013
).
24.
M.
Szakáll
,
M.
Debertshäuser
,
C. P.
Lackner
,
A.
Mayer
,
O.
Eppers
,
K.
Diehl
,
A.
Theis
,
S. K.
Mitra
, and
S.
Borrmann
, “
Comparative study on immersion freezing utilizing single-droplet levitation methods
,”
Atmos. Chem. Phys.
21
,
3289
3316
(
2021
).
25.
D. N.
Gabyshev
,
M.
Szakáll
,
D. V.
Shcherbakov
,
A. A.
Fedorets
, and
S. M.
Dyachkov
, “
Oscillatory signatures in the raindrop motion relative to the air medium with terminal velocity
,”
Atmosphere
13
,
1137
(
2022
).
26.
M.
Szakáll
,
S. K.
Mitra
,
K.
Diehl
, and
S.
Borrmann
, “
Shapes and oscillations of falling raindrops—A review
,”
Atmos. Res.
97
,
416
425
(
2010
).
27.
K. V.
Beard
,
V.
Bringi
, and
M.
Thurai
, “
A new understanding of raindrop shape
,”
Atmos. Res.
97
,
396
415
(
2010
).
28.
E. D.
Wilkes
and
O. A.
Basaran
, “
Forced oscillations of pendant (sessile) drops
,”
Phys. Fluids
9
,
1512
1528
(
1997
).
29.
O. A.
Basaran
and
D. W.
DePaoli
, “
Nonlinear oscillations of pendant drops
,”
Phys. Fluids
6
,
2923
2943
(
1994
).
30.
A. S.
Mohamed
,
J. M.
Lopez-Herrera
,
M. A.
Herrada
,
L. B.
Modesto-Lopez
, and
A. M.
Ganan-Calvo
, “
Effect of a surrounding liquid environment on the electrical disruption of pendant droplets
,”
Langmuir
32
,
6815
6824
(
2016
).
31.
N.
Zografov
,
N.
Tankovsky
, and
A.
Andreeva
, “
Droplet oscillations driven by an electric field
,”
Colloids Surf., A
460
,
351
354
(
2014
).
32.
A.
Andreeva
and
N.
Zografov
, “
Oscillation mode and resonant frequencies of spherical pendant droplets
,”
AIP Conf. Proc.
2075
,
160015
(
2019
).
33.
J. H.
Moon
,
B. H.
Kang
, and
H.-Y.
Kim
, “
Effects of acoustic resonance on hydrodynamics and evaporation of a pendant liquid droplet
,” in
International Electronic Packaging Technical Conference and Exhibition
(
ASME
,
2005
), Vol.
42002
, pp.
2005
2009
.
34.
J. H.
Moon
,
B. H.
Kang
, and
H.-Y.
Kim
, “
The lowest oscillation mode of a pendant drop
,”
Phys. Fluids
18
,
021702
(
2006
).
35.
A.
Bussonnière
,
M.
Baudoin
,
P.
Brunet
, and
O. B.
Matar
, “
Dynamics of sessile and pendant drops excited by surface acoustic waves: Gravity effects and correlation between oscillatory and translational motions
,”
Phys. Rev. E
93
,
053106
(
2016
).
36.
J.
Sargison
,
G.
Walker
, and
R.
Rossi
, “
Design and calibration of a wind tunnel with a two dimensional contraction,” in
15th Australasian Fluid Mechanics Conference (
2004
).
37.
L.
Sigalotti
,
F.
Peña-Polo
, and
L.
Trujillo
, “
An image analysis procedure for measuring the surface tension of pendant micro-drops
,”
J. Comput. Methods
12
,
371
382
(
2012
).
38.
W.
Harkins
and
F.
Brown
, “
The determination of surface tension (free surface energy), and the weight of falling drops: The surface tension of water and benzene by the capillary height method
,”
J. Am. Chem. Soc.
41
,
499
524
(
1919
).
39.
F. A.
Morrison
,
An Introduction to Fluid Mechanics
(
Cambridge University Press
,
2013
).
40.
C.
Williamson
and
R.
Govardhan
, “
Dynamics and forcing of a tethered sphere in a fluid flow
,”
J. Fluids Struct.
11
,
293
305
(
1997
).
41.
R.
Govardhan
and
C.
Williamson
, “
Vortex-induced motions of a tethered sphere
,” in
Proceedings of the 3rd International Colloquium on Bluff Body Aerodynamics and Applications, 1996
[
J. Wind Eng. Ind. Aerodyn.
69–71
,
375
385
(
1997
)].
42.
H.
Sakamoto
and
H.
Haniu
, “
A study on vortex shedding from spheres in a uniform flow
,”
J. Fluids Eng.
112
,
386
392
(
1990
).
43.
K. V.
Beard
and
C.
Chuang
, “
A new model for the equilibrium shape of raindrops
,”
J. Atmos. Sci.
44
,
1509
1524
(
1987
).
44.
H. R.
Pruppacher
and
R. L.
Pitter
, “
A semi-empirical determination of the shape of cloud and rain drops
,”
J. Atmos. Sci.
28
,
86
94
(
1971
).
45.
D.
Liu
,
C.
He
,
J. P.
Schwarz
, and
X.
Wang
, “
Lifecycle of light-absorbing carbonaceous aerosols in the atmosphere
,”
Clim. Atmos. Sci.
3
,
1
18
(
2020
).
46.
J.
Henzing
,
D.
Olivié
, and
P.
Van Velthoven
, “
A parameterization of size resolved below cloud scavenging of aerosols by rain
,”
Atmos. Chem. Phys.
6
,
3363
(
2006
).
47.
C.
Andronache
, “
Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions
,”
Atmos. Chem. Phys.
3
,
131
143
(
2003
).
48.
A.
Dickerson
and
J.
Dockery
(
2023
). “Pendant drops in vertical airflow,”
Open Science Framework
. osf.io/ufwez
You do not currently have access to this content.