Driven by upstream high-pressure steam, liquid slugs in nuclear power plant pipelines impact the end orifice at high speed, leading to bursting pipelines and threatening the plant's safety. This research aimed to accurately and efficiently assess the dynamic behavior of an isolated slug driven by pressurized air in a voided line with an end orifice. An improved one-dimensional (1D) model for the slug motion and impact was established. The dynamic variation of the pressure at both the slug's tail and front, the variation of the slug length, and the frictional resistance coefficient in the model was obtained by three-dimensional (3D) computational fluid dynamics (CFD). Based on 27 cases with different pipeline diameters and tank pressures, it was observed that the driving air pressure had a quadratic relationship and that the slug length had a constant rate of decrease vs the slug tail displacement. Finally, the decrease in the driving air pressure behind the slug, the increase in the air pressure ahead of the slug, the holdup coefficient, and the friction factor obtained from the 3D CFD results were interpreted in the 1D model, and the velocity histories of the liquid slug were found to be in excellent agreement with the 3D CFD solutions.

1.
ANSYS
,
ANSYS Fluent Version 18.0
(
ANSYS
,
Canonsburg, PA
,
2018
).
2.
Bendiksen
,
K. H.
,
Langsholt
,
M.
, and
Liu
,
L.
, “
An experimental investigation of the motion of long bubbles in high viscosity slug flow in horizontal pipes
,”
Int. J. Multiphase Flow
104
,
60
73
(
2018
).
3.
Bozkus
,
Z.
,
Baran
,
O. U.
, and
Ger
,
M.
, “
Experimental and numerical analysis of transient liquid slug motion in a voided line
,”
J. Pressure Vessel Technol.
126
,
241
249
(
2004
).
4.
Bozkus
,
Z.
, and
Wiggert
,
D. C.
, “
Liquid slug motion in a voided line
,”
J. Fluids Struct.
11
,
947
963
(
1997
).
5.
Dincer
,
A. E.
,
Bozkus
,
Z.
, and
Tijsseling
,
A. S.
, “
Prediction of pressure variation at an elbow subsequent to a liquid slug impact by using smoothed particle hydrodynamics
,”
J. Pressure Vessel Technol.
140
(
3
),
031303
(
2018
).
6.
Fang
,
H.
,
Zhou
,
L.
,
Cao
,
Y.
,
Cai
,
F.
, and
Liu
,
D.
, “
3D CFD simulations of air-water interaction in T-junction pipes of urban stormwater drainage system
,”
Urban Water J.
19
,
74
(
2022
).
7.
He
,
J.
,
Hou
,
Q.
,
Lian
,
J. J.
,
Tijsseling
,
A. S.
,
Bozkus
,
Z.
,
Laanearu
,
J.
, and
Lin
,
L.
, “
Three-dimensional CFD analysis of liquid slug acceleration and impact in a voided pipeline with end orifice
,”
Eng. Appl. Comput. Fluid Mech.
16
(
1
),
1444
1463
(
2022
).
8.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
9.
Hou
,
Q.
,
Kruisbrink
,
A. C. H.
,
Pearce
,
F.
,
Tijsseling
,
A. S.
, and
Yue
,
T.
, “
Smoothed particle hydrodynamic simulations of flow separation at bends
,”
Comput. Fluids
90
,
138
146
(
2014
).
10.
Hou
,
Q.
,
Li
,
S.
,
Tijsseling
,
A. S.
, and
Laanearu
,
J.
, “
Discussion of ‘Rigid water column model for simulating the emptying process in a pipeline using pressurized air’ by O. E. Coronado-Hernandez, V. S. Fuertes-Miquel, P. L. Iglesias-Rey, and F. J. Martinez-Solano
,”
J. Hydraul. Eng.
146
(
3
),
07020001
(
2020
).
11.
Hou
,
Q.
,
Tijsseling
,
A. S.
, and
Bozkus
,
Z.
, “
Dynamic force on an elbow caused by a traveling liquid slug
,”
J. Pressure Vessel Technol.
136
,
031302
(
2014
).
12.
Hou
,
Q.
,
Tijsseling
,
A. S.
,
Laanearu
,
J.
,
Annus
,
I.
,
Koppel
,
T.
,
Bergant
,
A.
,
Vuckovic
,
S.
,
Anderson
,
A.
, and
van't Westende
,
J. M. C.
, “
Experimental investigation on rapid filling of a large-scale pipeline
,”
J. Hydraul. Eng.
140
,
04014053
(
2014
).
13.
Kang
,
J.
,
Liu
,
F.
,
Hou
,
Q.
,
He
,
J.
, and
Lin
,
L.
, “
3-D CFD numerical simulation of transient impact of slug flow on elbow
,”
J. Vib. Shock
41
(
23
),
322
329
(
2022
). (in Chinese).
14.
Korzilius
,
S. P.
,
Tijsseling
,
A. S.
,
Bozkus
,
Z.
,
Anthonissen
,
M. J.
, and
Schilders
,
W. H.
, “
Modelling liquid slugs accelerating in inclined conduits
,”
J. Pressure Vessel Technol.
139
(
6
),
061301
(
2017
).
15.
Laanearu
,
J.
,
Annus
,
I.
,
Koppel
,
T.
,
Bergant
,
A.
,
Vuckovic
,
S.
,
Hou
,
Q.
,
Tijsseling
,
A. S.
,
Anderson
,
A.
, and
van't Westende
,
J. M. C.
, “
Emptying of large-scale pipeline by pressurized air
,”
J. Hydraul. Eng.
138
(
12
),
1090
1100
(
2012
).
16.
Li
,
X.
,
Zhang
,
J.
,
Zhu
,
D. Z.
, and
Qian
,
S.
, “
Modeling geysers triggered by an air pocket migrating with running water in a pipeline
,”
Phys. Fluids
35
,
045126
(
2023
).
17.
Lv
,
H. X.
,
Pei
,
G. X.
, and
Yang
,
L. Z.
,
Hydraulics
(
Agricultural Press of China
,
2002
) [in Chinese].
18.
Martins
,
N. M. C.
,
Carrico
,
N. J. G.
,
Ramos
,
H. M.
, and
Covas
,
D. I. C.
, “
Velocity distribution in pressurized pipe flow using CFD: Accuracy and mesh analysis
,”
Comput. Fluids
105
,
218
230
(
2014
).
19.
Mohmmed
,
A. O.
,
AI-Kayiem
,
H. H.
, and
Osman
,
A. B.
, “
Investigations on the slug two-phase flow in horizontal pipes: Past, presents, and future directives
,”
Chem. Eng. Sci.
238
,
116611
(
2021
).
20.
Owen
,
I.
, and
Hussein
,
I. B.
, “
The propulsion of an isolated slug through a pipe and the forces produced as it impacts upon an orifice plate
,”
Int. J. Multiphase Flow
20
(
3
),
659
666
(
1994
).
21.
Schmelter
,
S.
,
Knotek
,
S.
,
Olbrich
,
M.
,
Fiebach
,
A.
, and
Bar
,
M.
, “
On the influence of inlet perturbations on slug dynamics in horizontal multiphase flow—A computational study
,”
Metrologia
58
,
014003
(
2021
).
22.
Shosho
,
C. E.
, and
Ryan
,
M. E.
, “
An experimental study of the motion of long bubbles in inclined tubes
,”
Chem. Eng. Sci.
56
,
2191
2204
(
2001
).
23.
Tijsseling
,
A. S.
,
Hou
,
Q.
, and
Bozkus
,
Z.
, “
An improved one-dimensional model for liquid slugs travelling in pipelines
,”
J. Pressure Vessel Technol.
138
,
011301
(
2016
).
24.
Zheng
,
W.
,
Lyu
,
F.
,
Su
,
J.
,
Jiang
,
C.
,
Zhao
,
D.
, and
Wu
,
M.
, “
Pipeline transportation model with pressure pulsation for high-concentration viscous paste
,”
Phys. Fluids
35
,
053101
(
2023
).
You do not currently have access to this content.