With an increasing demand for small energy generation in urban areas, small-scale Savonius wind turbines are growing their share rapidly. In such an environment, Savonius turbines are exposed to low mean velocity with highly turbulent flows made by complex geographies. Here, we report the flow-induced rotation of a Savonius turbine in a highly turbulent flow (18% turbulence intensity). The high turbulence is realized by using the far-field of an open-jet. Compared to low turbulence inflow (1% turbulence intensity), the turbine rotates 4% faster in high turbulence since the torque/power increases with turbulence intensity. The wake measurement by hot-wire anemometry and particle image velocimetry reveals the suppression of vortex shedding in high turbulence. In addition, a newly developed semi-empirical low-order model, which can include the effect of turbulence intensity and integral length scale, also confirms high turbulence intensity contributes to the rotation of the turbine. These results will boost more installation of small Savonius turbines in urban areas in the future.

1.
F.
Toja-Silva
,
A.
Colmenar-Santos
, and
M.
Castro-Gil
, “
Urban wind energy exploitation systems: Behaviour under multidirectional flow conditions—Opportunities and challenges
,”
Renewable Sustainable Energy Rev.
24
,
364
(
2013
).
2.
T.
Ishugah
,
Y.
Li
,
R.
Wang
, and
J.
Kiplagat
, “
Advances in wind energy resource exploitation in urban environment: A review
,”
Renewable Sustainable Energy Rev.
37
,
613
(
2014
).
3.
F.
Emejeamara
,
A.
Tomlin
, and
J.
Millward-Hopkins
, “
Urban wind: Characterisation of useful gust and energy capture
,”
Renewable Energy
81
,
162
(
2015
).
4.
S. J.
Savonius
,
The Wing-Rotor in Theory and Practice
(
Omnia-Mikrofilm-Technik
,
1981
).
5.
J.
Zou
,
Y.
Yu
,
J.
Liu
,
J.
Niu
,
K.
Chauhan
, and
C.
Lei
, “
Field measurement of the urban pedestrian level wind turbulence
,”
Build. Environ.
194
,
107713
(
2021
).
6.
R.
Ricci
,
R.
Romagnoli
,
S.
Montelpare
, and
D.
Vitali
, “
Experimental study on a Savonius wind rotor for street lighting systems
,”
Appl. Energy
161
,
143
(
2016
).
7.
S.
Montelpare
,
V.
D'Alessandro
,
A.
Zoppi
, and
R.
Ricci
, “
Experimental study on a modified Savonius wind rotor for street lighting systems. Analysis of external appendages and elements
,”
Energy
144
,
146
(
2018
).
8.
Y.
Jooss
,
R.
Bolis
,
T.
Bracchi
, and
R. J.
Hearst
, “
Flow field and performance of a vertical-axis wind turbine on model buildings
,”
Flow
2
,
E10
(
2022
).
9.
Y.
Jooss
,
E. B.
Rønning
,
R. J.
Hearst
, and
T.
Bracchi
, “
Influence of position and wind direction on the performance of a roof mounted vertical axis wind turbine
,”
J. Wind Eng. Ind. Aerodyn.
230
,
105177
(
2022
).
10.
Y.
Jooss
,
R. J.
Hearst
, and
T.
Bracchi
, “
Influence of incoming turbulence and shear on the flow field and performance of a lab-scale roof-mounted vertical axis wind turbine
,”
J. Renewable Sustainable Energy
15
,
063302
(
2023
).
11.
A.
Damak
,
Z.
Driss
, and
M.
Abid
, “
Experimental investigation of helical Savonius rotor with a twist of 180°
,”
Renewable Energy
52
,
136
(
2013
).
12.
B.
Blackwell
,
R.
Sheldahl
, and
L.
Feltz
,
Wind Tunnel Performance Data for Two-and Three-Bucket Savonius Rotors
(
Sandia Laboratories
,
1977
).
13.
L.
Wang
and
R. W.
Yeung
, “
On the performance of a micro-scale Bach-type turbine as predicted by discrete-vortex simulations
,”
Appl. Energy
183
,
823
(
2016
).
14.
New World Wind
, see https://newworldwind.com/aeroleaf for “
Aeroleaf®
;” accessed September 08, 2023.
15.
A.
Shigetomi
,
Y.
Murai
,
Y.
Tasaka
, and
Y.
Takeda
, “
Interactive flow field around two Savonius turbines
,”
Renewable Energy
36
,
536
(
2011
).
16.
W.
Tian
,
A.
Ozbay
, and
H.
Hu
, “
Effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model
,”
Phys. Fluids
26
,
125108
(
2014
).
17.
W.
Lubitz
, “
Impact of ambient turbulence on performance of a small wind turbine
,”
Renewable Energy
61
,
69
(
2014
).
18.
D.
Wekesa
,
C.
Wang
,
Y.
Wei
, and
W.
Zhu
, “
Experimental and numerical study of turbulence effect on aerodynamic performance of a small-scale vertical axis wind turbine
,”
J. Wind Eng. Ind. Aerodyn.
157
,
1–14
(
2016
).
19.
S.
Rockel
,
J.
Peinke
,
M.
Hölling
, and
R. B.
Cal
, “
Dynamic wake development of a floating wind turbine in free pitch motion subjected to turbulent inflow generated with an active grid
,”
Renewable Energy
112
,
1–16
(
2017
).
20.
M.
Talavera
and
F.
Shu
, “
Experimental study of turbulence intensity influence on wind turbine performance and wake recovery in a low-speed wind tunnel
,”
Renewable Energy
109
,
363
(
2017
).
21.
W.
Tian
,
A.
Ozbay
, and
H.
Hu
, “
A wind tunnel study of wind loads on a model wind turbine in atmospheric boundary layer winds
,”
J. Fluids Struct.
85
,
17
(
2019
).
22.
A.
Vinod
and
A.
Banerjee
, “
Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence
,”
Appl. Energy
254
,
113639
(
2019
).
23.
S.
Gambuzza
and
B.
Ganapathisubramani
, “
The effects of free-stream turbulence on the performance of a model wind turbine
,”
J. Renewable Sustainable Energy
13
,
023304
(
2021
).
24.
B.
Loganathan
,
I.
Mustary
,
H.
Chowdhury
, and
F.
Alam
, “
Effect of turbulence on a Savonius type micro wind turbine
,”
Energy Procedia
110
,
549
(
2017
).
25.
A. D.
Aliferis
,
M. S.
Jessen
,
T.
Bracchi
, and
R. J.
Hearst
, “
Performance and wake of a Savonius vertical‐axis wind turbine under different incoming conditions
,”
Wind Energy
22
,
1260
(
2019
).
26.
N.
Fujisawa
, “
On the torque mechanism of Savonius rotors
,”
J. Wind Eng. Ind. Aerodyn.
40
,
277
(
1992
).
27.
Y.
Murai
,
T.
Nakada
,
T.
Suzuki
, and
F.
Yamamoto
, “
Particle tracking velocimetry applied to estimate the pressure field around a Savonius turbine
,”
Meas. Sci. Technol.
18
,
2491
(
2007
).
28.
M.
Nakajima
,
S.
Iio
, and
T.
Ikeda
, “
Performance of Savonius rotor for environmentally friendly hydraulic turbine
,”
J. Fluid Sci. Technol.
3
,
420
(
2008
).
29.
H.
Blackburn
and
W.
Melbourne
, “
The effect of free-stream turbulence on sectional lift forces on a circular cylinder
,”
J. Fluid Mech.
306
,
267
(
1996
).
30.
H.
Tyagi
,
R.
Liu
,
D. S.-K.
Ting
, and
C. R.
Johnston
, “
Measurement of wake properties of a sphere in freestream turbulence
,”
Exp. Therm. Fluid Sci.
30
,
587
(
2006
).
31.
E.
Rind
and
I. P.
Castro
, “
On the effects of free-stream turbulence on axisymmetric disc wakes
,”
Exp. Fluids
53
,
301
(
2012
).
32.
R. J.
Hearst
,
G.
Gomit
, and
B.
Ganapathisubramani
, “
Effect of turbulence on the wake of a wall-mounted cube
,”
J. Fluid Mech.
804
,
513
(
2016
).
33.
L.
Chen
,
J.
Chen
, and
Z.
Zhang
, “
Review of the Savonius rotor's blade profile and its performance
,”
J. Renewable Sustainable Energy
10
,
013306
(
2018
).
34.
M.
Gibson
, “
Spectra of turbulence in a round jet
,”
J. Fluid Mech.
15
,
161
(
1963
).
35.
F.
Champagne
, “
The fine-scale structure of the turbulent velocity field
,”
J. Fluid Mech.
86
,
67
(
1978
).
36.
P.
Burattini
,
R.
Antonia
, and
L.
Danaila
, “
Similarity in the far field of a turbulent round jet
,”
Phys. Fluids
17
,
025101
(
2005
).
37.
A.
Ghasemi
,
V.
Roussinova
, and
R.
Balachandar
, “
A study in the developing region of square jet
,”
J. Turbul.
14
,
1–24
(
2013
).
38.
B.
Pani
and
R.
Dash
, “
Three‐dimensional single and multiple free jets
,”
J. Hydraul. Eng.
109
,
254
(
1983
).
39.
N.
Rajaratnam
,
Turbulent Jets
(
Elsevier
,
1976
).
40.
M.
Xu
,
A.
Pollard
,
J.
Mi
,
F.
Secretain
, and
H.
Sadeghi
, “
Effects of Reynolds number on some properties of a turbulent jet from a long square pipe
,”
Phys. Fluids
25
,
035102
(
2013
).
41.
J.
Mi
and
G.
Nathan
, “
Statistical properties of turbulent free jets issuing from nine differently-shaped nozzles
,”
Flow, Turbul. Combust.
84
,
583
(
2010
).
42.
M.
Xu
,
J.
Zhang
,
P.
Li
, and
J.
Mi
, “
On two distinct Reynolds number regimes of a turbulent square jet
,”
Theor. Appl. Mech. Lett.
5
,
117
(
2015
).
43.
G.
Batchelor
,
The Theory of Homogeneous Turbulence
(
Cambridge University Press
,
1953
).
44.
A.
Kistler
and
T.
Vrebalovich
, “
Grid turbulence at large Reynolds numbers
,”
J. Fluid Mech.
26
,
37
(
1966
).
45.
C.
Sicot
,
P.
Devinant
,
T.
Laverne
,
S.
Loyer
, and
J.
Hureau
, “
Experimental study of the effect of turbulence on horizontal axis wind turbine aerodynamics
,”
Wind Energy
9
,
361
(
2006
).
46.
C.-R.
Chu
and
P.-H.
Chiang
, “
Turbulence effects on the wake flow and power production of a horizontal-axis wind turbine
,”
J. Wind Eng. Ind. Aerodyn.
124
,
82
(
2014
).
47.
M.
Gad-el-Hak
and
S.
Corrsin
, “
Measurements of the nearly isotropic turbulence behind a uniform jet grid
,”
J. Fluid Mech.
62
,
115
(
1974
).
48.
H.
Makita
, “
Realization of a large-scale turbulence field in a small wind tunnel
,”
Fluid Dyn. Res.
8
,
53
(
1991
).
49.
A.
Praskovsky
and
S.
Oncley
, “
Measurements of the Kolmogorov constant and intermittency exponent at very high Reynolds numbers
,”
Phys. Fluids
6
,
2886
(
1994
).
50.
P.
Welch
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
15
,
70
(
1967
).
51.
A.
Kumar
and
R. P.
Saini
, “
Performance parameters of Savonius type hydrokinetic turbine—A review
,”
Renewable Sustainable Energy Rev.
64
,
289
(
2016
).
52.
O. d.
Vries
, “
Fluid dynamic aspects of wind energy conversion
,” Report No. 243 (
Advisory Group for Aerospace Research and Development NEUILLY-SUR-SEINE
,
France
,
1979
).
53.
R.
Wagner
,
I.
Antoniou
,
S. M.
Pedersen
,
M. S.
Courtney
, and
H. E.
Jørgensen
, “
The influence of the wind speed profile on wind turbine performance measurements
,”
Wind Energy
12
,
348
(
2009
).
54.
R.
Wagner
,
M.
Courtney
,
J.
Gottschall
, and
P.
Lindelöw-Marsden
, “
Accounting for the speed shear in wind turbine power performance measurement
,”
Wind Energy
14
,
993
(
2011
).
55.
A.
Choukulkar
,
Y.
Pichugina
,
C. T.
Clack
,
R.
Calhoun
,
R.
Banta
,
A.
Brewer
, and
M.
Hardesty
, “
A new formulation for rotor equivalent wind speed for wind resource assessment and wind power forecasting
,”
Wind Energy
19
,
1439
(
2016
).
56.
J.
Westerweel
and
F.
Scarano
, “
Universal outlier detection for PIV data
,”
Exp. Fluids
39
,
1096
(
2005
).
57.
T.
Ido
,
Y.
Murai
, and
F.
Yamamoto
, “
Postprocessing algorithm for particle-tracking velocimetry based on ellipsoidal equations
,”
Exp. Fluids
32
,
326
(
2002
).
58.
T.
Ido
and
Y.
Murai
, “
A recursive interpolation algorithm for particle tracking velocimetry
,”
Flow Meas. Instrum.
17
,
267
(
2006
).
59.
Y.
Kyozuka
, “
An experimental study on the Darrieus-Savonius turbine for the tidal current power generation
,”
J. Fluid Sci. Technol.
3
,
439
(
2008
).
60.
M.
Shinozuka
, “
Monte Carlo solution of structural dynamics
,”
Comput. Struct.
2
,
855
(
1972
).
61.
M.
Shinozuka
,
C.-B.
Yun
, and
H.
Seya
, “
Stochastic methods in wind engineering
,”
J. Wind Eng. Ind. Aerodyn.
36
,
829
(
1990
).
62.
G. T.
Scarlett
and
I. M.
Viola
, “
Unsteady hydrodynamics of tidal turbine blades
,”
Renewable Energy
146
,
843
(
2020
).
63.
T.
von Kármán
, “
Progress in the statistical theory of turbulence
,”
Proc. Natl. Acad. Sci. U. S. A.
34
,
530
(
1948
).
64.
J.
Kaimal
,
J.
Wyngaard
,
Y.
Izumi
, and
O.
Coté
, “
Spectral characteristics of surface‐layer turbulence
,”
Q. J. R. Meteorol. Soc.
98
,
563
(
1972
).
65.
J. F.
Manwell
,
J. G.
McGowan
, and
A. L.
Rogers
,
Wind Energy Explained: Theory, Design and Application
(
John Wiley & Sons
,
2010
).
66.
T.
Burton
,
N.
Jenkins
,
D.
Sharpe
, and
E.
Bossanyi
,
Wind Energy Handbook
(
John Wiley & Sons
,
2011
).
67.
A.
Shigetomi
, “
Interacting flow field in two Savonius turbines system
,” Master thesis (
Hokkaido University
,
2010
).
68.
Y.
Suzuki
,
M.
Kiya
, and
T.
Takahashi
, “
Turbulence structure in the intermediate wake of a rotating flat plate. (Large-scale vortices)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
52
,
3898
(
1986
) (in Japanese).
69.
M.
Yamagishi
, “
Phase averaging analysis of the velocity profiles in the wake of a Savonius rotor
,”
J. Visualization Soc. Jpn.
24
,
79
(
2004
) (in Japanese).
70.
S.
Le Fouest
,
D.
Fernex
, and
K.
Mulleners
, “
Time scales of dynamic stall development on a vertical-axis wind turbine blade
,”
Flow
3
,
E11
(
2023
).
71.
M.
Dave
and
J. A.
Franck
, “
Analysis of dynamic stall development on a cross-flow turbine blade
,”
Phys. Rev. Fluids
8
,
074702
(
2023
).
You do not currently have access to this content.