The detonation properties of mixtures of gelled nitromethane (NM) with hollow glass microballoons (GMBs), the concentration of which varied from 16 to 30 wt. %, have been studied using an optical technique with high temporal and spatial resolution. It is shown that the addition of GMBs up to 30 wt. % does not qualitatively change the reaction zone structure of NM, which is in accordance with the classical detonation theory. However, the detonation parameters of the mixture decrease significantly with increasing GMB concentration—the pressure at the Chapman–Jouguet point drops by more than an order of magnitude at a porosity of 75%. The non-monotonic nature of the change in critical detonation diameter with decreasing mixture density is noted. The dependence of the critical diameter on the porosity of U-shape with the formation of two local minima at 8 and 18 wt. % GMB in the mixture and a local maximum at 13 wt. % GMB is obtained. At a concentration above 20 wt. % GMB, the critical detonation diameter increases dramatically, and at 30 wt. % GMB, the critical diameter becomes comparable to that of gelled NM.

1.
J. J.
Lee
,
D. L.
Frost
,
J. H. S.
Lee
, and
A.
Dremin
, “
Propagation of nitromethane detonations in porous media
,”
Shock Waves
5
,
115
119
(
1995
).
2.
H. N.
Presles
,
P.
Vidal
,
J. C.
Gois
,
B. A.
Khasainov
, and
B. S.
Ermolaev
, “
Influence of glass microballoons size on the detonation of nitromethane based mixtures
,”
Shock Waves
4
,
325
329
(
1995
).
3.
N. P.
Satonkina
,
A. P.
Ershov
,
A. O.
Kashkarov
, and
I. A.
Rubtsov
, “
Elongated conductive structures in detonation soot of high explosives
,”
RSC Adv.
10
,
17620
17626
(
2020
).
4.
A. S.
Yunoshev
,
A. V.
Plastinin
, and
S. I.
Rafeichik
, “
Detonation velocity of an emulsion explosive sensitized with polymer microballoons
,”
Combust., Explos. Shock Waves
53
,
738
743
(
2017
).
5.
M.
Yang
,
H.
Ma
, and
Z.
Shen
, “
Effect of RDX powders on detonation characteristics of emulsion explosives
,”
J. Energ. Mater.
37
,
459
474
(
2019
).
6.
T.
Busby
,
J.
Smith
,
P.
Sheehan
, and
J.
Oxley
, “
Modifying explosive behavior with additives
,”
Propellants, Explos., Pyrotech.
48
,
e202200324
(
2023
).
7.
R.
Kan
et al, “
Non-ideal explosive underwater explosion shockwave model
,”
Phys. Fluids
35
,
087121
(
2023
).
8.
V. V.
Lavrov
,
A. N.
Zubareva
, and
P. V.
Komissarov
, “
Dependence of detonability of emulsion explosive based on ammonium nitrate on porosity
,”
Russ. J. Phys. Chem. B
13
,
603
609
(
2019
).
9.
A. W.
Campbell
,
M. E.
Malin
, and
T. E.
Holland
, “
Temperature effects in the liquid explosive, nitromethane
,”
J. Appl. Phys.
27
,
963
963
(
1956
).
10.
A. N.
Dremin
,
O. K.
Rozanov
, and
V. S.
Trofimov
, “
On the detonation of nitromethane
,”
Combust. Flame
7
,
153
162
(
1963
).
11.
D. M.
Dattelbaum
et al, “
Influence of hot spot features on the initiation characteristics of heterogeneous nitromethane
,” in
Proceedings of the 14th International Detonation Symposium, Coeur D'Alene, ID
(Office of Naval Research, Arlington, VA,
2010
), pp.
611
621
.
12.
R.
Engelke
, “
Effect of a physical inhomogeneity on steady-state detonation velocity
,”
Phys. Fluids
22
,
1623
1630
(
1979
).
13.
B. A.
Khasainov
,
B. S.
Ermolaev
, and
H. N.
Presles
, “
Effect of glass microballoons on shock wave sensitivity and detonation critical diameter of condensed explosives
,” in
Tenth International Symposium on Detonation, Office of Naval Research,
1993
.
14.
J. L.
Sabourin
et al, “
Effect of nano-aluminum and fumed silica particles on deflagration and detonation of nitromethane
,”
Propellants, Explos., Pyrotech.
34
,
385
393
(
2009
).
15.
J. C.
Gois
,
J.
Campos
, and
R.
Mendes
, “
On extinction detonation behavior of NM-PMMA-GMB mixtures
,” in
Proceedings of the Conference of the American Physical Society on Shock Compression of Condensed Matter
, Seattle, Washington (AIP Press,
1996
), pp.
827
830
.
16.
V.
Mochalova
,
A.
Utkin
,
M.
Shakula
, and
V.
Lavrov
, “
Effect of charge diameter on detonation parameters in the mixture of gelled nitromethane/microballoons
,”
Phys. Fluids
35
,
017117
(
2023
).
17.
B. N.
Kondrikov
,
G. D.
Kozak
,
V. B.
Oblomskii
, and
A. V.
Savkin
, “
Detonation transformations in an aerated liquid
,”
Combust., Explos. Shock Waves
23
,
195
(
1987
).
18.
A.
Higgins
,
J.
Loiseau
, and
X. C.
Mi
, “
Detonation velocity/diameter relation in gelled explosive with inert inclusions
,”
AIP Conf. Proc.
1979
,
100019
(
2018
).
19.
D.
Price
and
A. R.
Clairmont
, Jr.
, “
Explosive behavior of nitroguanidine
,”
Symp. (Int.) Combust.
12
,
761
770
(
1969
).
20.
D.
Price
,
A. R.
Clairmont
, Jr.
, and
J. O.
Erkman
, “
The NOL large scale gap test. III. Compilation of unclassified data and supplementary information for interpretation of results
,”
Report No. 1974-03-08
(
1974
).
21.
V.
Annikov
,
B. N.
Kondrikov
,
N. N.
Korneeva
, and
S. N.
Puzyrev
, “
Detonation mechanism for gas-filled watery gels
,”
Combust., Explos. Shock Waves
19
,
502
505
(
1983
).
22.
A. S.
Yunoshev
,
A. V.
Plastinin
, and
V. V.
Sil'vestrov
, “
Effect of the density of an emulsion explosive on the reaction zone width
,”
Combust., Explos. Shock Waves
48
,
319
327
(
2012
).
23.
M.
Yoshida
et al, “
Detonation behavior of emulsion explosives containing glass microballoons
,” in
Proceedings of the 8th Symposium (International) on Detonation
(Naval Surface Weapons Center, 1986), pp.
993
1000
.
24.
H. N.
Presles
,
J.
Campos
,
O.
Heuze
, and
P.
Bauer
, “
Effects of microballoons concentration on the detonation characteristics of nitromethane—PMMA mixtures
,” in
Proceedings of the 9th International Symposium on Detonation
(Office of Naval Research,
1989
), pp.
925
928
.
25.
C. L.
Mader
,
Detonation Properties of Condensed Explosives Computed Using the Becker-Kistiakowsky-Wilson Equation of State
, Report No. 2900 (
Los Alamos Scientific Laboratory of the University of California
,
1963
).
26.
V.
Mochalova
et al, “
Reaction zone structure and detonation parameters of nitromethane/polymethylmethacrylate and its mixture with microballoons
,”
Phys. Fluids
33
,
046108
(
2021
).
27.
L. M.
Barker
and
R. E.
Hollenbach
, “
Laser interferometer for measuring high velocities of any reflecting surface
,”
J. Appl. Phys.
43
,
4669
4675
(
1972
).
28.
Y. B.
Zel'dovich
, “
K voprosu ob energeticheskom is-pol'zovanii detonatsionnogo goreniya [On the issue of energy development fission of detonation combustion]
,”
J. Tech. Phys.
10
,
14
53
(
1940
).
29.
J.
Neumann
, “
Theory of detonation waves
,” Office of Scientific Research and Development Report No. 549, 1942.
30.
W.
Döring
, “
Über den Detonationsvorgang in Gasen
,”
Ann. Phys.
435
,
421
436
(
1943
).
31.
V. M.
Mochalova
,
A. V.
Utkin
,
V. A.
Garanin
, and
S. I.
Torunov
, “
Structure of detonation waves in tetranitromethane and its mixtures with methanol
,”
Combust., Explos. Shock Waves
45
,
320
325
(
2009
).
32.
A. V.
Utkin
,
G. I.
Kanel
, and
V. E.
Fortov
, “
Empirical macrokinetics of the decomposition of a desensitized hexogen in shock and detonation waves
,”
Combust., Explos. Shock Waves
25
,
625
632
(
1989
).
33.
B.
Štimac
,
H. Y. S.
Chan
,
M.
Kunzel
, and
M.
Suceska
, “
Numerical modelling of detonation reaction zone of nitromethane by EXPLO5 code and Wood and Kirkwood theory
,”
Cent. Eur. J. Energy Mater.
17
,
239
261
(
2020
).
34.
S. A.
Sheffield
et al, “
Particle velocity measurements of the reaction zone in nitromethane
,” in
Proceedings of the 12th International Detonation Symposium, San Diego, Ca
, 12–16 August 2002, pp.
159
166
.
35.
A. N.
Dremin
,
S. D.
Savrov
,
V. S.
Trofimov
, and
K. K.
Shvedov
,
Detonation Waves in Condensed Media
(
Nauka
,
1970
).
You do not currently have access to this content.