In this work, we experimentally investigated the impact of surface roughness on drag reduction as well as the plastron stability of superhydrophobic surfaces (SHSs) in turbulent flows. A series of SHSs were fabricated by spraying hydrophobic nanoparticles on sandpapers. By changing the grit size of sandpapers from 240 to 1500, the root mean square roughness height (krms) of the SHSs varied from 4 to 14 μm. The experiments were performed in a turbulent channel flow facility, where the mean flow speed (Um) varied from 0.5 to 4.4 m/s, and the Reynolds number (Rem) based on Um and channel height changed from 3400 to 26 400. The drag reduction by SHSs was measured based on pressure drops in the fully developed flow region. The plastron status and gas fraction (φg) were simultaneously monitored by reflected-light microscopy. Our results showed a strong correlation between drag reduction and krms+ = krms/δv, where δv is the viscous length scale. For krms+ < 1, drag reduction was independent of krms+. A maximum 47% drag reduction was observed. For 1 < krms+ < 2, less drag reduction was observed due to the roughness effect. And for krms+ > 2, the SHSs caused an increase in drag. Furthermore, we found that surface roughness influenced the trend of plastron depletion in turbulent flows. As increasing Rem, φg reduced gradually for SHSs with large krms, but reduced rapidly and maintained as a constant for SHSs with small krms. Finally, we found that as increasing Rem, the slip length of SHS reduced, although φg was nearly a constant.

1.
B.
Bhushan
and
Y. C.
Jung
, “
Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction
,”
Prog. Mater. Sci.
56
,
1
108
(
2011
).
2.
S. S.
Ganar
and
A.
Das
, “
Unraveling the interplay of leaf structure and wettability: A comparative study on superhydrophobic leaves of Cassia tora, Adiantum capillus-veneris, and Bauhinia variegata
,”
Phys. Fluids
35
,
114113
(
2023
).
3.
J.
Ou
,
B.
Perot
, and
J. P.
Rothstein
, “
Laminar drag reduction in microchannels using ultrahydrophobic surfaces
,”
Phys. Fluids
16
,
4635
4643
(
2004
).
4.
H.
Ling
,
S.
Srinivasan
,
K.
Golovin
,
G. H.
McKinley
,
A.
Tuteja
, and
J.
Katz
, “
High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces
,”
J. Fluid Mech.
801
,
670
703
(
2016
).
5.
M. S.
Naim
and
M. F.
Baig
, “
Turbulent drag reduction in Taylor-Couette flows using different super-hydrophobic surface configurations
,”
Phys. Fluids
31
,
095108
(
2019
).
6.
C.
Neinhuis
and
W.
Barthlott
, “
Characterization and distribution of water-repellent, self-cleaning plant surfaces
,”
Ann. Bot.
79
,
667
677
(
1997
).
7.
Y.
Liu
,
M.
Wu
,
Z.
Zhang
,
K.
Luo
,
J.
Lu
,
L.
Lin
,
K.
Xu
,
H.
Zhu
,
B.
Wang
,
W.
Lei
, and
Y.
Fu
, “
Fabrication of wear-resistant and superhydrophobic aluminum alloy surface by laser-chemical hybrid methods
,”
Phys. Fluids
35
,
052108
(
2023
).
8.
A.
Marmur
, “
Super-hydrophobicity fundamentals: Implications to biofouling prevention
,”
Biofouling
22
,
107
115
(
2006
).
9.
G. B.
Hwang
,
K.
Page
,
A.
Patir
,
S. P.
Nair
,
E.
Allan
, and
I. P.
Parkin
, “
The anti-biofouling properties of superhydrophobic surfaces are short-lived
,”
ACS Nano
12
,
6050
6058
(
2018
).
10.
A. M. A.
Mohamed
,
A. M.
Abdullah
, and
N. A.
Younan
, “
Corrosion behavior of superhydrophobic surfaces: A review
,”
Arab. J. Chem.
8
,
749
765
(
2015
).
11.
Y.
Cheng
,
J.
Xu
, and
Y.
Sui
, “
Numerical study on drag reduction and heat transfer enhancement in microchannels with superhydrophobic surfaces for electronic cooling
,”
Appl. Therm. Eng.
88
,
71
81
(
2015
).
12.
P.
Zhang
and
F. Y.
Lv
, “
A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications
,”
Energy
82
,
1068
1087
(
2015
).
13.
M.
Kharati-Koopaee
and
M. R.
Akhtari
, “
Numerical study of fluid flow and heat transfer phenomenon within microchannels comprising different superhydrophobic structures
,”
Int. J. Therm. Sci.
124
,
536
546
(
2018
).
14.
H.
Park
,
C. H.
Choi
, and
C. J.
Kim
, “
Superhydrophobic drag reduction in turbulent flows: A critical review
,”
Exp. Fluids
62
,
229
(
2021
).
15.
C.
Lee
,
C. H.
Choi
, and
C. J.
Kim
, “
Structured surfaces for a giant liquid slip
,”
Phys. Rev. Lett.
101
,
064501
(
2008
).
16.
C.
Lee
,
C. H.
Choi
, and
C. J.
Kim
, “
Superhydrophobic drag reduction in laminar flows: A critical review
,”
Exp. Fluids
57
,
176
(
2016
).
17.
D.
Song
,
R. J.
Daniello
, and
J. P.
Rothstein
, “
Drag reduction using superhydrophobic sanded Teflon surfaces
,”
Exp. Fluids
55
,
1783
(
2014
).
18.
T.
Min
and
J.
Kim
, “
Effects of hydrophobic surface on skin-friction drag
,”
Phys. Fluids
16
,
L55
L58
(
2004
).
19.
G.
McHale
,
M. I.
Newton
, and
N. J.
Shirtcliffe
, “
Immersed superhydrophobic surfaces: Gas exchange, slip and drag reduction properties
,”
Soft Matter
6
,
714
719
(
2010
).
20.
M.
Castagna
,
N.
Mazellier
, and
A.
Kourta
, “
Wake of super-hydrophobic falling spheres: Influence of the air layer deformation
,”
J. Fluid Mech.
850
,
646
673
(
2018
).
21.
J. W.
Gose
,
K.
Golovin
,
M.
Boban
,
J. M.
Mabry
,
A.
Tuteja
,
M.
Perlin
, and
S. L.
Ceccio
, “
Characterization of superhydrophobic surfaces for drag reduction in turbulent flow
,”
J. Fluid Mech.
845
,
560
580
(
2018
).
22.
R. A.
Bidkar
,
L.
Leblanc
,
A. J.
Kulkarni
,
V.
Bahadur
,
S. L.
Ceccio
, and
M.
Perlin
, “
Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces
,”
Phys. Fluids
26
,
085108
(
2014
).
23.
K.
Alamé
and
K.
Mahesh
, “
Wall-bounded flow over a realistically rough superhydrophobic surface
,”
J. Fluid Mech.
873
,
977
1019
(
2019
).
24.
A.
Busse
and
N. D.
Sandham
, “
Influence of an anisotropic slip-length boundary condition on turbulent channel flow
,”
Phys. Fluids
24
,
055111
(
2012
).
25.
W. A.
Rowin
and
S.
Ghaemi
, “
Streamwise and spanwise slip over a superhydrophobic surface
,”
J. Fluid Mech.
870
,
1127
1157
(
2019
).
26.
A.
Rastegari
and
R.
Akhavan
, “
On drag reduction scaling and sustainability bounds of superhydrophobic surfaces in high Reynolds number turbulent flows
,”
J. Fluid Mech.
864
,
327
347
(
2019
).
27.
D. G.
Crowdy
, “
Slip length formulas for longitudinal shear flow over a superhydrophobic grating with partially filled cavities
,”
J. Fluid Mech.
925
,
R2
(
2021
).
28.
H.
Ling
,
J.
Katz
,
M.
Fu
, and
M.
Hultmark
, “
Effect of Reynolds number and saturation level on gas diffusion in and out of a superhydrophobic surface
,”
Phys. Rev. Fluids
2
,
124005
(
2017
).
29.
L.
Zhang
,
C. R.
Crick
, and
R. J.
Poole
, “
In situ monitor of superhydrophobic surface degradation to predict its drag reduction in turbulent flow
,”
Appl. Phys. Lett.
123
,
064101
(
2023
).
30.
H.
Li
,
Z.
Li
,
X.
Tan
,
X.
Wang
,
S.
Huang
,
Y.
Xiang
,
P.
Lv
, and
H.
Duan
, “
Three-dimensional backflow at liquid-gas interface induced by surfactant
,”
J. Fluid Mech.
899
,
A8
(
2020
).
31.
H.
Rodriguez-Broadbent
and
D. G.
Crowdy
, “
Superhydrophobic surfaces with recirculating interfacial flow due to surfactants are ‘effectively’ immobilized
,”
J. Fluid Mech.
956
,
R3
(
2023
).
32.
E.
Aljallis
,
M. A.
Sarshar
,
R.
Datla
,
V.
Sikka
,
A.
Jones
, and
C. H.
Choi
, “
Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow
,”
Phys. Fluids
25
,
025103
(
2013
).
33.
C.
Lee
and
C. J.
Kim
, “
Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls
,”
Langmuir
25
,
12812
12818
(
2009
).
34.
N.
Yu
,
A.
McClelland
,
F. J.
del Campo Melchor
,
S. Y.
Lee
, and
J. H.
Lee
, “
Sustainability of the plastron on nano-grass-covered micro-trench superhydrophobic surfaces in high-speed flows of open water
,”
J. Fluid Mech.
962
,
A9
(
2023
).
35.
M.
Xu
,
N.
Yu
,
J.
Kim
, and
C. J. C.
Kim
, “
Superhydrophobic drag reduction in high-speed towing tank
,”
J. Fluid Mech.
908
,
A6
(
2020
).
36.
M.
Xu
,
A.
Grabowski
,
N.
Yu
,
G.
Kerezyte
,
J. W.
Lee
,
B. R.
Pfeifer
, and
C. J.
Kim
, “
Superhydrophobic drag reduction for turbulent flows in open water
,”
Phys. Rev. Appl.
13
,
034056
(
2020
).
37.
P.
Du
,
J.
Wen
,
Z.
Zhang
,
D.
Song
,
A.
Ouahsine
, and
H.
Hu
, “
Maintenance of air layer and drag reduction on superhydrophobic surface
,”
Ocean Eng.
130
,
328
335
(
2017
).
38.
J.
Breveleri
,
S.
Mohammadshahi
,
T.
Dunigan
, and
H.
Ling
, “
Plastron restoration for underwater superhydrophobic surface by porous material and gas injection
,”
Colloids Surf. A
676
,
132319
(
2023
).
39.
B. P.
Lloyd
,
P. N.
Bartlett
, and
R. J. K.
Wood
, “
Active gas replenishment and sensing of the wetting state in a submerged superhydrophobic surface
,”
Soft Matter
13
,
1413
1419
(
2017
).
40.
D.
Panchanathan
,
A.
Rajappan
,
K. K.
Varanasi
, and
G. H.
McKinley
, “
Plastron regeneration on submerged superhydrophobic surfaces using in situ gas generation by chemical reaction
,”
ACS Appl. Mater. Interfaces
10
,
33684
33692
(
2018
).
41.
S.
Hoshian
,
V.
Jokinen
, and
S.
Franssila
, “
Robust hybrid elastomer/metal-oxide superhydrophobic surfaces
,”
Soft Matter
12
,
6526
6535
(
2016
).
42.
L.
Li
,
J.
Zhu
,
S.
Zhi
,
E.
Liu
,
G.
Wang
,
Z.
Zeng
,
W.
Zhao
, and
Q.
Xue
, “
Study of adhesion and friction drag on a rough hydrophobic surface: Sandblasted aluminum
,”
Phys. Fluids
30
,
071903
(
2018
).
43.
R.
Sun
,
J.
Zhao
,
Z.
Li
,
J.
Mo
,
Y.
Pan
, and
D.
Luo
, “
Preparation of mechanically durable superhydrophobic aluminum surface by sandblasting and chemical modification
,”
Prog. Org. Coat.
133
,
77
84
(
2019
).
44.
Z.
Zhang
,
Z.
Shen
,
H.
Wu
,
L.
Li
, and
X.
Fu
, “
Study on preparation of superhydrophobic Ni-Co coating and corrosion resistance by sandblasting–electrodeposition
,”
Coatings
10
,
1164
1116
(
2020
).
45.
D.
Reholon
and
S.
Ghaemi
, “
Plastron morphology and drag of a superhydrophobic surface in turbulent regime
,”
Phys. Rev. Fluids
3
,
104003
(
2018
).
46.
A.
Rajappan
,
K.
Golovin
,
B.
Tobelmann
,
V.
Pillutla
,
Abhijeet
,
A.
Tuteja
, and
G. H.
McKinley
, “
Influence of textural statistics on drag reduction by scalable, randomly rough superhydrophobic surfaces in turbulent flow
,”
Phys. Fluids
31
,
042107
(
2019
).
47.
W.
Abu Rowin
and
S.
Ghaemi
, “
Effect of Reynolds number on turbulent channel flow over a superhydrophobic surface
,”
Phys. Fluids
32
,
075105
(
2020
).
48.
A.
Rajappan
and
G. H.
McKinley
, “
Cooperative drag reduction in turbulent flows using polymer additives and superhydrophobic walls
,”
Phys. Rev. Fluids
5
,
114601
(
2020
).
49.
J.
Seo
and
A.
Mani
, “
Effect of texture randomization on the slip and interfacial robustness in turbulent flows over superhydrophobic surfaces
,”
Phys. Rev. Fluids
3
,
044601
(
2018
).
50.
J.
Seo
,
R.
García-Mayoral
, and
A.
Mani
, “
Pressure fluctuations and interfacial robustness in turbulent flows over superhydrophobic surfaces
,”
J. Fluid Mech.
783
,
448
473
(
2015
).
51.
E. J. G.
Cartagena
,
I.
Arenas
,
M.
Bernardini
, and
S.
Leonardi
, “
Dependence of the drag over super hydrophobic and liquid infused surfaces on the textured surface and Weber number
,”
Flow Turbul. Combust.
100
,
945
960
(
2018
).
52.
J.
Seo
,
R.
García-Mayoral
, and
A.
Mani
, “
Turbulent flows over superhydrophobic surfaces: Flow-induced capillary waves, and robustness of air-water interfaces
,”
J. Fluid Mech.
835
,
45
85
(
2018
).
53.
R.
Ma
,
K.
Alamé
, and
K.
Mahesh
, “
Direct numerical simulation of turbulent channel flow over random rough surfaces
,”
J. Fluid Mech.
908
,
A40
(
2020
).
54.
S.
Mohammadshahi
,
J.
Breveleri
, and
H.
Ling
, “
Fabrication and characterization of super-hydrophobic surfaces based on sandpapers and nano-particle coatings
,”
Colloids Surf. A
666
,
131358
(
2023
).
55.
M. D.
Choudhury
,
S.
Das
,
A. G.
Banpurkar
, and
A.
Kulkarni
, “
Regression analysis of wetting characteristics for different random surface roughness of polydimethylsiloxane using sandpapers
,”
Colloids Surf. A
647
,
129038
(
2022
).
56.
ISO 6344-3
,
Coated Abrasives––Determination and Designation of Grain Size Distribution—Part 3: Microgrit Sizes
(
ISO
,
2021
).
57.
See https://www.grainger.com/know-how/equipment/kh-video-sandpaper-grit-chart for more information about Sandpaper Grit Charts & Grades.
58.
B.
Bhushan
and
S.
Chilamakuri
, “
Non-Gaussian surface roughness distribution of magnetic media for minimum friction/stiction
,”
J. Appl. Phys.
79
,
5794
5796
(
1996
).
59.
J. M.
Barros
,
M. P.
Schultz
, and
K. A.
Flack
, “
Measurements of skin-friction of systematically generated surface roughness
,”
Int. J. Heat Fluid Flow
72
,
1
7
(
2018
).
60.
K. A.
Flack
and
M. P.
Schultz
, “
Hydraulic characterization of sandpaper roughness
,”
Exp. Fluids
64
,
3
(
2023
).
61.
R. B.
Dean
, “
Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow
,”
J. Fluids Eng.
100
,
215
(
1978
).
62.
E. S.
Zanoun
,
H.
Nagib
, and
F.
Durst
, “
Refined cf relation for turbulent channels and consequences for high-Re experiments
,”
Fluid Dyn. Res.
41
,
021405
(
2009
).
63.
R. J.
Daniello
,
N. E.
Waterhouse
, and
J. P.
Rothstein
, “
Drag reduction in turbulent flows over superhydrophobic surfaces
,”
Phys. Fluids
21
,
085103
(
2009
).
64.
F. M.
White
,
Viscous Fluid Flow
, 2nd ed. (
McGraw-Hill Higher Education
,
2006
).
65.
M. P.
Schultz
and
K. A.
Flack
, “
The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime
,”
J. Fluid Mech.
580
,
381
405
(
2007
).
66.
L.
Joly
,
C.
Ybert
,
E.
Trizac
, and
L.
Bocquet
, “
Hydrodynamics within the electric double layer on slipping surfaces
,”
Phys. Rev. Lett.
93
,
257805
(
2004
).
67.
P.
Joseph
and
P.
Tabeling
, “
Direct measurement of the apparent slip length
,”
Phys. Rev. E
71
,
035303
(
2005
).
68.
K.
Fukagata
,
N.
Kasagi
, and
P.
Koumoutsakos
, “
A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces
,”
Phys. Fluids
18
,
051703
(
2006
).
69.
J.
Seo
and
A.
Mani
, “
On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces
,”
Phys. Fluids
28
,
025110
(
2016
).
70.
R.
Poetes
,
K.
Holtzmann
,
K.
Franze
, and
U.
Steiner
, “
Metastable underwater superhydrophobicity
,”
Phys. Rev. Lett.
105
(
1
),
166104
(
2010
).
71.
S.
Srinivasan
,
J. A.
Kleingartner
,
J. B.
Gilbert
,
R. E.
Cohen
,
A. J. B.
Milne
, and
G. H.
McKinley
, “
Sustainable drag reduction in turbulent Taylor-Couette flows by depositing sprayable superhydrophobic surfaces
,”
Phys. Rev. Lett.
114
(
1
),
014501
(
2015
).
72.
D.
Moreira
,
S. H.
Park
,
S.
Lee
,
N.
Verma
, and
P. R.
Bandaru
, “
Dynamic superhydrophobic behavior in scalable random textured polymeric surfaces
,”
J. Appl. Phys.
119
,
125302
(
2016
).
73.
M.
Sakai
,
A.
Nakajima
, and
A.
Fujishima
, “
Removing an air layer from a superhydrophobic surface in flowing water
,”
Chem. Lett.
39
,
482
484
(
2010
).
74.
Q.-S.
Zheng
,
Y.
Yu
, and
Z.-H.
Zhao
, “
Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces
,”
Langmuir
21
,
12207
12212
(
2005
).

Supplementary Material

You do not currently have access to this content.