High-rise buildings have diverse shapes and configurations to harmonize with the architectural, engineering, environmental, economic, and functional considerations, and aspirations. However, the architectural shape and configuration plays a vital role in determining the aerodynamic characteristics of the surrounding flow field and wind forces acting on the building. This paper numerically investigates the aerodynamic characteristics of the zigzag-patterned building by adopting the three-dimensional large eddy simulation (LES). The flow around a square cylinder in high Reynolds number is used to valid the numerical method. The results show that the zigzag pattern has a little effect on the mean streamwise velocity but significantly influences the fluctuation of streamwise and vertical velocities in the wake region. It is observed that the zigzag pattern on the leeward wall results in a narrower wake region, while on the windward wall, leads to a thinner and longer shear layers and shorter recirculation region. As for the pedestrian level wind, the flow velocity within the separation area is noticeably reduced when incorporating a zigzag pattern on the windward wall. Moreover, the fluctuating pressure coefficient values at the sidewalls of a building with a zigzag windward wall is significantly smaller than that of a smooth configuration building due to the façade pattern's impact in diminishing the curvature of the nearby separation at the leading edge.

1.
Ai
,
Z. T.
and
Mak
,
C. M.
, “
Potential use of reduced-scale models in CFD simulations to save numerical resources: Theoretical analysis and case study of flow around an isolated building
,”
J. Wind Eng. Ind. Aerodyn.
134
,
25
29
(
2014
).
2.
Alrawashdeh
,
H.
and
Stathopoulos
,
T.
, “
Wind pressures on large roofs of low buildings and wind codes and standards
,”
J. Wind Eng. Ind. Aerodyn.
147
,
212
225
(
2015
).
3.
Baker
,
W. F.
,
Korista
,
D. S.
, and
Novak
,
L. C.
, “
Burj Dubai: Engineering the world's tallest building
,”
Struct. Des. Tall Spec. Build.
16
,
361
375
(
2007
).
4.
Bhattacharyya
,
B.
and
Dalui
,
S. K.
, “
Investigation of mean wind pressures on ‘E’ plan shaped tall building
,”
Wind Struct.
26
,
99
114
(
2018
).
5.
Blocken
,
B.
, “
Computational fluid dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations
,”
Build. Environ.
91
,
219
245
(
2015
).
6.
Blocken
,
B.
,
Carmeliet
,
J.
, and
Stathopoulos
,
T.
, “
CFD evaluation of wind speed conditions in passages between parallel buildings—Effect of wall-function roughness modifications for the atmospheric boundary layer flow
,”
J. Wind Eng. Ind. Aerodyn.
95
,
941
962
(
2007a
).
7.
Blocken
,
B.
,
Stathopoulos
,
T.
, and
Carmeliet
,
J.
, “
CFD simulation of the atmospheric boundary layer: Wall function problems
,”
Atmos. Environ.
41
,
238
252
(
2007b
).
8.
Building Department
,
Code of Practice on Wind Effects in Hong Kong 2019
(
The Government of Hong Kong SAR
,
Hong Kong
,
2019
).
9.
Carassale
,
L.
,
Freda
,
A.
, and
Marrè-Brunenghi
,
M.
, “
Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners
,”
J. Fluids Sturct.
44
,
195
204
(
2014
).
10.
Chakraborty
,
S.
,
Dalui
,
S. K.
, and
Ahuja
,
A. K.
, “
Wind load on irregular plan shaped tall building—A case study
,”
Wind Struct.
19
,
59
73
(
2014
).
11.
Du
,
Y.
,
Mak
,
C. M.
,
Liu
,
J.
,
Xia
,
Q.
,
Niu
,
J.
, and
Kwok
,
K. C.
, “
Effects of lift-up design on pedestrian level wind comfort in different building configurations under three wind directions
,”
Build. Environ.
117
,
84
99
(
2017
).
12.
Franke
,
J.
,
Hellsten
,
A.
,
Schlünzen
,
H.
, and
Carissimo
,
B.
,
Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment
(
COST Office
,
Hamburg
,
2007
).
13.
Gaur
,
N.
and
Raj
,
R.
, “
Aerodynamic mitigation by corner modification on square model under wind loads employing CFD and wind tunnel
,”
Ain Shams Eng. J.
13
(
1
),
101521
(
2021
).
14.
Gomes
,
M. G.
,
Rodrigues
,
A. M.
, and
Mendes
,
P.
, “
Experimental and numerical study of wind pressures on irregular-plan shapes
,”
J. Wind Eng. Ind. Aerodyn.
93
,
741
756
(
2005
).
15.
Gu
,
M.
and
Quan
,
Y.
, “
Across-wind loads of typical tall buildings
,”
J. Wind Eng. Ind. Aerodyn.
92
,
1147
1165
(
2004
).
16.
Hayashida
,
H.
and
Iwasa
,
Y.
, “
Aerodynamic shape effects of tall building for vortex induced vibration
,”
J. Wind Eng. Ind. Aerodyn.
33
,
237
242
(
1990
).
17.
He
,
G. S.
,
Li
,
N.
, and
Wang
,
J. J.
, “
Drag reduction of square cylinders with cut-corners at the front edges
,”
Exp. Fluids
55
(
1745
),
1
11
(
2014
).
18.
Huang
,
D.
and
Chen
,
G.
, “
Wind pressure distribution, non-Gaussian characteristics, and conical vortices of a large-span roof with variable arc angles
,”
J. Build. Eng.
57
,
104929
(
2022
).
19.
Huang
,
Y.
,
Hu
,
X.
, and
Zeng
,
N.
, “
Impact of wedge-shaped roofs on airflow and pollutant dispersion inside urban street canyons
,”
Build. Environ.
44
(
12
),
2335
2347
(
2009
).
20.
Irwin
,
P.
,
Kilpatrick
,
J.
, and
Frisque
,
A.
, “
Friend or foe, wind at height
,” in
Proceedings of CTBUH 8th World Congress
,
Dubai
,
2008
.
21.
Irwin
,
P. A.
, “
Bluff body aerodynamics in wind engineering
,”
J. Wind Eng. Ind. Aerodyn.
96
,
701
712
(
2008
).
22.
Irwin
,
P. A.
, “
Wind engineering challenges of the new generation of super-tall buildings
,”
J. Wind Eng. Ind. Aerodyn.
97
,
328
334
(
2009
).
23.
Issa
,
R. I.
, “
Solution of the implicitly discretized fluid flow equations by operator-splitting
,”
J. Comput. Phys.
62
,
40
65
(
1986
).
24.
Isyumov
,
N.
,
Fediw
,
A. A.
,
Colaco
,
J.
, and
Banavalkar
,
P. V.
, “
Performance of a tall building under wind action
,”
J. Wind Eng. Ind. Aerodyn.
42
,
1053
1064
(
1992
).
25.
Inan Gunaydin
,
T.
, “
Wind flow on and around U-shaped buildings
,”
Eng. Des. Technol.
20
(
3
),
841
859
(
2022
).
26.
Jafari
,
M.
and
Alipour
,
A.
, “
Review of approaches, opportunities, and future directions for improving aerodynamics of tall buildings with smart facades
,”
Sustainable Cities Soc.
72
,
102979
(
2021
).
27.
Janssen
,
W. D.
,
Blocken
,
B.
, and
van Hooff
,
T.
, “
Pedestrian wind comfort around buildings: Comparison of wind comfort criteria based on whole-flow field data for a complex case study
,”
Build. Environ.
59
,
547
562
(
2013
).
28.
Keerthana
,
M.
and
Harikrishna
,
P.
, “
Application of CFD for assessment of galloping stability of rectangular and H-sections
,”
J. Sci. Ind. Res.
72
,
419
427
(
2013
), available at https://api.semanticscholar.org/CorpusID:110879878.
29.
Kim
,
Y. M.
and
You
,
K. P.
, “
Dynamic responses of a tapered tall building to wind loads
,”
J. Wind Eng. Ind. Aerodyn.
90
,
1771
1782
(
2002
).
30.
Kim
,
Y. M.
,
You
,
K. P.
, and
Ko
,
N. H.
, “
Across-wind responses of an aeroelastic tapered tall building
,”
J. Wind Eng. Ind. Aerodyn.
96
,
1307
1319
(
2008
).
31.
Kumar
,
A.
and
Raj
,
R.
, “
CFD study of flow characteristics and pressure distribution on re-entrant wing faces of L-shape buildings
,”
Civ. Eng. Archit.
10
(
1
),
289
304
(
2022
).
32.
Kumar
,
D.
and
Dalui
,
S. K.
, “
Effect of internal angles between limbs of cross plan shaped tall building under wind load
,”
Wind Struct.
24
,
95
118
(
2017
).
33.
Larose
,
G. L.
, “
The dynamic action of gusty winds on long-span bridges
,” Ph.D. thesis (
Technical University of Denmark
,
Denmark
,
1997
).
34.
Launder
,
B. E.
and
Spalding
,
D. B.
, “
The numerical computation of turbulent flows
,”
Comput. Methods Appl. Mech. Eng.
3
(
2
),
269
289
(
1974
).
35.
Li
,
S.
,
Li
,
M.
, and
Liao
,
H.
, “
The lift on an aerofoil in grid-generated turbulence
,”
J. Fluid Mech.
771
,
16
35
(
2015
).
36.
Li
,
Y.
and
Li
,
Q.
, “
Across-wind dynamic loads on L-shaped tall buildings
,”
Wind Struct.
23
,
385
403
(
2016
).
37.
Li
,
Z.
,
Sun
,
Y.
,
Huang
,
H.
,
Chen
,
Z.
, and
Wei
,
Q.
, “
Experimental research on amplitude characteristics of wind loads of super tall buildings in hilly terrain field
,”
J. Build. Struct.
31
(
6
),
171
178
(
2010
).
38.
Liang
,
C.
and
Papadakis
,
G.
, “
Large eddy simulation of pulsating flow over a circular cylinder at subcritical Reynolds number
,”
Comput. Fluids
36
(
2
),
299
312
(
2007
).
39.
Liu
,
Y. J.
,
Fu
,
J. Y.
, and
He
,
Y. C.
, “
Effects of Reynolds number on wind effects toward a super-tall building with curved cross-section
,”
J. Build. Eng.
64
,
105660
(
2022
).
40.
Lyn
,
D. A.
,
Einav
,
S.
,
Rodi
,
W.
, and
Park
,
J. A.
, “
Laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder
,”
J. Fluid Mech.
304
,
285
319
(
1995
).
41.
Mallick
,
M.
,
Mohanta
,
A.
,
Kumar
,
A.
, and
Patra
,
K. C.
, “
Gene-expression programming for the assessment of surface mean pressure coefficient on building surfaces
,”
Build. Simul.
13
,
401
418
(
2020
).
42.
Mandal
,
S.
,
Dalui
,
S. K.
, and
Bhattacharjya
,
S.
, “
Influence of side ratio on wind induced responses of U plan shape tall building
,” in
Recent Trends in Civil Engineering
, Lecture Notes in Civil Engineering, edited by
Sil
,
A. N.
,
Kontoni
,
D. P.
, and
Pancharathi
,
R. K.
(
Springer
,
Singapore
,
2023
), Vol.
274
, pp.
345
355
.
43.
Meena
,
R. K.
,
Raj
,
R.
, and
Anbukumar
,
S.
, “
Numerical investigation of wind load on side ratio of high-rise buildings
,” in
Advances in Construction Materials and Sustainable Environment
, Lecture Notes in Civil Engineering (
Springer
,
Singapore
,
2022
), Vol.
196
, pp.
937
951
.
44.
Mittal
,
H.
,
Sharma
,
A.
, and
Gairola
,
A.
, “
Numerical simulation of pedestrian level wind flow around buildings: Effect of corner modification and orientation
,”
J. Build. Eng.
22
,
314
326
(
2019
).
45.
Mittal
,
H.
,
Sharma
,
A.
, and
Gairola
,
A.
, “
Numerical simulation of pedestrian level wind conditions: Effect of building shape and orientation,” Environ.
Fluid Mech.
20
,
663
688
(
2020
).
46.
Miyashita
,
K.
,
Katagiri
,
J.
,
Nakamura
,
O.
,
Ohkuma
,
T.
,
Tamura
,
Y.
,
Itoh
,
M.
, and
Mimachi
,
T.
, “
Wind-induced response of high-rise buildings Effects of corner cuts or openings in square buildings
,”
J. Wind Eng. Ind. Aerodyn.
50
,
319
328
(
1993
).
47.
Mooneghi
,
M. A.
and
Kargarmoakhar
,
R.
, “
Aerodynamic mitigation and shape optimization of buildings: Review
,”
J. Build. Eng.
6
,
225
235
(
2016
).
48.
Nagar
,
S. K.
,
Raj
,
R.
, and
Dev
,
N.
, “
Experimental study of wind induced pressures on tall buildings of different shapes
,”
Wind Struct.
31
(5),
431
453
(
2020
).
49.
Nishimura
,
A.
and
Taniike
,
Y.
, “
Fluctuating wind forces of a stationary two dimensional square prism
,”
J. Struct. Constr. Eng.
65
,
37
43
(
2000
).
50.
Okada
,
H.
and
Kong
,
L.
, “
The effects of open passage on reducing wind response of tall building
,” in
Proceedings of the 29th Technical Report
(
Public Works Research Institute
,
1999
), pp.
561
566
.
51.
Paul
,
R.
and
Dalui
,
S. K.
, “
Wind effects on ‘Z’ plan-shaped tall building: A case study
,”
Int. J. Adv. Struct. Eng.
8
,
319
335
(
2016
).
52.
Raj
,
R.
and
Ahuja
,
A. K.
, “
Wind loads on cross shape tall buildings
,”
J. Acad. Ind. Res.
2
(2),
111
113
(
2013
).
53.
Raj
,
R.
,
Rana
,
T.
,
Anchalia
,
T.
, and
Khola
,
U.
, “
Numerical study of wind excited action on H plan-shaped tall building
,”
Int. J. Emerging Technol.
11
(3),
591
605
(
2020
).
54.
Ramponi
,
R.
,
Blocken
,
B.
,
de Coo
,
L. B.
, and
Janssen
,
W. D.
, “
CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths
,”
Build. Environ.
92
,
152
166
(
2015
).
55.
Rodi
,
W.
, “
Comparison of LES and RANS calculations of the flow around bluff bodies
,”
J. Wind Eng. Ind. Aerodyn.
69–71
,
55
75
(
1997
).
56.
Sanyal
,
P.
and
Dalui
,
S. K.
, “
Effects of internal angle between limbs of “Y” plan shaped tall building under wind load
,”
J. Build. Eng.
33
,
101843
(
2021
).
57.
Sharma
,
A.
,
Mittal
,
H.
, and
Gairola
,
A.
, “
Mitigation of wind load on tall buildings through aerodynamic modifications
,”
J. Build. Eng.
18
,
180
194
(
2018
).
58.
Sohankar
,
A.
, “
Large eddy simulation of flow past rectangular-section cylinders: Side ratio effects
,”
J. Wind Eng. Ind. Aerodyn.
96
,
640
655
(
2008
).
59.
Stathopoulos
,
T.
, “
Wind environmental conditions around tall buildings with chamfered corners
,”
J. Wind Eng. Ind. Aerodyn.
21
(
1
),
71
87
(
1985
).
60.
Takano
,
Y.
and
Moonen
,
P.
, “
On the influence of roof shape on flow and dispersion in an urban street canyon
,”
J. Wind Eng. Ind. Aerodyn.
123
,
107
120
(
2013
).
61.
Tamura
,
T.
and
Miyagi
,
T.
, “
The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes
,”
J. Wind Eng. Ind. Aerodyn.
83
,
135
145
(
1999
).
62.
Tamura
,
Y.
,
Xu
,
X.
,
Tanaka
,
H.
,
Kim
,
Y. C.
,
Yoshida
,
A.
, and
Yang
,
Q.
, “
Aerodynamic and pedestrian-level wind characteristics of super-tall buildings with various configurations
,”
Procedia Eng.
199
,
28
37
(
2017
).
63.
Tominaga
,
Y.
,
Akabayashi
,
S.
,
Kitahara
,
T.
, and
Arinami
,
Y.
, “
Air flow around isolated gable-roof buildings with different roof pitches: Wind tunnel experiments and CFD simulations
,”
Build. Environ.
84
,
204
213
(
2015
).
64.
Tominaga
,
Y.
,
Mochida
,
A.
,
Murakami
,
S.
, and
Sawaki
,
S.
, “
Comparison of various revised k–ε models and LES applied to flow around a high-rise building model with 1: 1: 2 shape placed within the surface boundary layer
,”
J. Wind Eng. Ind. Aerodyn.
96
,
389
411
(
2008a
).
65.
Tominaga
,
Y.
,
Mochida
,
A.
,
Yoshie
,
R.
,
Kataoka
,
H.
,
Nozu
,
T.
,
Yoshikawa
,
M.
, and
Shirasawa
,
T.
, “
AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings
,”
J. Wind Eng. Ind. Aerodyn.
96
,
1749
1761
(
2008b
).
66.
Tse
,
K. T.
,
Hitchcock
,
P. A.
,
Kwok
,
K. C. S.
,
Thepmongkorn
,
S.
, and
Chan
,
C. M.
, “
Economic perspectives of aerodynamic treatments of square tall buildings
,”
J. Wind Eng. Ind. Aerodyn.
97
(9–10),
455
467
(
2009
).
67.
Tse
,
K. T.
,
Zhang
,
X.
,
Weerasuriya
,
A. U.
,
Li
,
S. W.
,
Kwok
,
K. C. S.
,
Mak
,
C. M.
, and
Niu
,
J.
, “
Adopting ‘lift-up’ building design to improve the surrounding pedestrian-level wind environment
,”
Build. Environ.
117
,
154
165
(
2017
).
68.
Uematsu
,
Y.
,
Yamada
,
M.
,
Higashiyama
,
H.
, and
Orimo
,
T.
, “
Effects of the corner shape of high-rise buildings on the pedestrian-level wind environment with consideration for mean and fluctuating wind speeds
,”
J. Wind Eng. Ind. Aerodyn.
44
(
1–3
),
2289
2300
(
1992
).
69.
Van Druenen
,
T.
,
Van Hooff
,
T.
,
Montazeri
,
H.
, and
Blocken
,
B.
, “
CFD evaluation of building geometry modifications to reduce pedestrian- level wind speed
,”
Build. Environ.
163
,
106293
(
2019
).
70.
Xu
,
X.
,
Yang
,
Q.
,
Yoshida
,
A.
, and
Tamura
,
Y.
, “
Characteristics of pedestrian-level wind around super-tall buildings with various configurations
,”
J. Wind Eng. Ind. Aerodyn.
166
,
61
73
(
2017
).
71.
Yamamura
,
S.
and
Kondo
,
Y.
, “
Numerical study on relationship between building shape and ground-level wind velocity
,”
J. Wind Eng. Ind. Aerodyn.
46–47
,
773
778
(
1993
).
72.
You
,
K. P.
,
Kim
,
Y. M.
, and
Ko
,
N. H.
, “
The evaluation of wind-induced vibration responses to a tapered tall building
,”
Struct. Des. Tall Spec. Build.
17
,
655
667
(
2007
).
73.
Yu
,
J.
,
Li
,
M.
, and
Stathopoulos
,
T.
, “
Strategies for modeling homogeneous isotropic turbulence and investigation of spatially correlated aerodynamic forces on a stationary model
,”
J. Fluids Struct.
90
,
43
56
(
2019
).
74.
Zhang
,
X.
,
Tse
,
K. T.
,
Weerasuriya
,
A. U.
,
Li
,
S. W.
,
Kwok
,
K. C. S.
,
Mak
,
C. M.
,
Niu
,
J.
, and
Lin
,
Z.
, “
Evaluation of pedestrian wind comfort near ‘lift-up’ buildings with different aspect ratios and central core modifications
,”
Build. Environ.
124
,
245
257
(
2017
).
You do not currently have access to this content.