A dense suspension of the cornstarch flowing on a very inclined wall finally forms some ridge-like patterns of the free surface. The onset of pattern formation is the primary target to elucidate the mechanism. In this work, based on the continuity of fluids and the force balance, we show that the flat free surface is unstable when the second normal stress difference N2 is negatively proportional to shear stress and the gravity component perpendicular to the wall is weak enough. Such instability is inevitable for the growth of a ridge-like surface profile oriented parallel to the flow direction. We use the instability criterion to predict the critical slope angle for the formation of ridge patterns. The estimated critical angle was found to be in agreement with experimental observations for a cornstarch suspension.

1.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
,
1131
1198
(
2009
).
2.
N. J.
Balmforth
,
J. W. M.
Bush
, and
R. V.
Craster
, “
Roll waves on flowing cornstarch suspensions
,”
Phys. Lett. A
338
,
479
484
(
2005
).
3.
B.
Darbois Texier
,
H.
Lhuissier
,
Y.
Forterre
, and
B.
Metzger
, “
Surface-wave instability without inertia in shear-thickening suspensions
,”
Commun. Phys.
3
,
232
(
2020
).
4.
S. P.
Kapitza
, “
Wave flow of thin viscous fluid layers
,”
Zh. Eksp. Teor. Fiz.
18
,
3
28
(
1948
).
5.
C.
Ness
,
R.
Seto
, and
R.
Mari
, “
The physics of dense suspensions
,”
Annu. Rev. Condens. Matter Phys.
13
,
97
117
(
2022
).
6.
R. I.
Tanner
,
Engineering Rheology
(
OUP
,
Oxford
,
2000
), Vol. 52.
7.
R. I.
Tanner
, “
Some methods for estimating the normal stress functions in viscometric flows
,”
Trans. Soc. Rheol.
14
,
483
507
(
1970
).
8.
L.
Sturges
and
D. D.
Joseph
, “
Slow motion and viscometric motion. Part V: The free surface on a simple fluid flowing down a tilted trough
,”
Arch. Ration. Mech. Anal.
59
,
359
387
(
1975
).
9.
B. D.
Timberlake
and
J. F.
Morris
, “
Particle migration and free-surface topography in inclined plane flow of a suspension
,”
J. Fluid Mech.
538
,
309
341
(
2005
).
10.
I. E.
Zarraga
,
D. A.
Hill
, and
D. T.
Leighton
, “
The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids
,”
J. Rheol.
44
,
185
220
(
2000
).
11.
A.
Singh
and
P. R.
Nott
, “
Experimental measurements of the normal stresses in sheared Stokesian suspensions
,”
J. Fluid Mech.
490
,
293
320
(
2003
).
12.
S. C.
Dai
,
E.
Bertevas
,
F.
Qi
, and
R. I.
Tanner
, “
Viscometric functions for noncolloidal sphere suspensions with Newtonian matrices
,”
J. Rheol.
57
,
493
510
(
2013
).
13.
C. D.
Cwalina
and
N. J.
Wagner
, “
Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions
,”
J. Rheol.
58
,
949
967
(
2014
).
14.
J. F.
Morris
and
F.
Boulay
, “
Curvilinear flows of noncolloidal suspensions: The role of normal stresses
,”
J. Rheol.
43
,
1213
1237
(
1999
).
15.
R. I.
Tanner
, “
Aspects of non-colloidal suspension rheology
,”
Phys. Fluids
30
,
101301
(
2018
).
16.
O.
Maklad
and
R.
Poole
, “
A review of the second normal-stress difference; its importance in various flows, measurement techniques, results for various complex fluids and theoretical predictions
,”
J. Non-Newtonian Fluid
292
,
104522
(
2021
).
17.
A.
Sierou
and
J. F.
Brady
, “
Rheology and microstructure in concentrated noncolloidal suspensions
,”
J. Rheol.
46
,
1031
1056
(
2002
).
18.
R.
Seto
,
R.
Mari
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening of frictional hard-sphere suspensions
,”
Phys. Rev. Lett.
111
,
218301
(
2013
).
19.
R.
Mari
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions
,”
J. Rheol.
58
,
1693
1724
(
2014
).
20.
S.
Gallier
,
E.
Lemaire
,
F.
Peters
, and
L.
Lobry
, “
Rheology of sheared suspensions of rough frictional particles
,”
J. Fluid Mech.
757
,
514
549
(
2014
).
21.
R.
Mari
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening in Brownian suspensions by dynamic simulation
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
15326
15330
(
2015
).
22.
R.
Seto
and
G. G.
Giusteri
, “
Normal stress differences in dense suspensions
,”
J. Fluid Mech.
857
,
200
215
(
2018
).
23.
É.
Guazzelli
and
O.
Pouliquen
, “
Rheology of dense granular suspensions
,”
J. Fluid Mech.
852
,
P1
(
2018
).
24.
G. G.
Giusteri
and
R.
Seto
, “
A theoretical framework for steady-state rheometry in generic flow conditions
,”
J. Rheol.
62
,
713
723
(
2018
).
25.
S.
Chakraborty
,
F.
Ivancic
,
M.
Solovchuk
, and
T.
Wen-Hann Sheu
, “
Stability and dynamics of a chemotaxis system with deformed free-surface in a shallow chamber
,”
Phys. Fluids
30
,
071904
(
2018
).
26.
E.
Han
,
N.
Van Ha
, and
H. M.
Jaeger
, “
Measuring the porosity and compressibility of liquid-suspended porous particles using ultrasound
,”
Soft Matter
13
,
3506
3513
(
2017
).
27.
É.
Couturier
,
F.
Boyer
,
O.
Pouliquen
, and
É.
Guazzelli
, “
Suspensions in a tilted trough: Second normal stress difference
,”
J. Fluid Mech.
686
,
26
39
(
2011
).
28.
T.
Dbouk
,
L.
Lobry
, and
E.
Lemaire
, “
Normal stresses in concentrated non-Brownian suspensions
,”
J. Fluid Mech.
715
,
239
272
(
2013
).
29.
S.
Gallier
,
E.
Lemaire
,
L.
Lobry
, and
F.
Peters
, “
Effect of confinement in wall-bounded non-colloidal suspensions
,”
J. Fluid Mech.
799
,
100
127
(
2016
).
30.
H. J.
Wilson
, “
An analytic form for the pair distribution function and rheology of a dilute suspension of rough spheres in plane strain flow
,”
J. Fluid Mech.
534
,
97
114
(
2005
).
31.
In our LF-DEM simulation, the lubrication outer cutoff is 0.5 a (a is the particle radius), and the divergence cutoff is 10 3 a. The particle-overlap spring constant is k n = 50 000 k 0, where k 0 6 π η 0 a γ ̇. The maximum particle displacement at each time step is set to 10 4 a. The Einstein term 2.5 η 0 ϕ is added for the viscosity.
32.
O.
Reynolds
, “
On the dilatancy of media composed of rigid particles in contact, with experimental illustrations
,”
Philos. Mag.
20
,
469
481
(
1885
).
You do not currently have access to this content.