The SARS-CoV-2 (COVID-19) pandemic has highlighted the crucial role of preventive measures in avoiding the spread of disease and understanding the transmission of airborne viruses in indoor spaces. This study focuses on a novel personal protective equipment consisting of a fan-peaked cap that creates a jet flow of air in front of the individual's face to reduce the concentration of airborne viruses and decrease the risk of infection transmission. Direct numerical simulation is used to analyze the effectiveness of the device under certain conditions, such as the velocity of the airflow, flow orientation, ambient conditions, and geometrical factors.

1.
M.
Shahroz
,
F.
Ahmad
,
M. S.
Younis
,
N.
Ahmad
,
M. N.
Kamel Boulos
,
R.
Vinuesa
, and
J.
Qadir
, “
COVID-19 digital contact tracing applications and techniques: A review post initial deployments
,”
Transp. Eng.
5
,
100072
(
2021
).
2.
S.
Asadi
,
A. S.
Wexler
,
C. D.
Cappa
,
S.
Barreda
,
N. M.
Bouvier
, and
W. D.
Ristenpart
, “
Aerosol emission and superemission during human speech increase with voice loudness
,”
Sci. Rep.
9
,
2348
(
2019
).
3.
R.
Zhang
,
Y.
Li
,
A. L.
Zhang
,
Y.
Wang
, and
M. J.
Molina
, “
Identifying airborne transmission as the dominant route for the spread of COVID-19
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
14857
14863
(
2020
).
4.
S.
Chaudhuri
,
S.
Basu
,
P.
Kabi
,
V. R.
Unni
, and
A.
Saha
, “
Modeling the role of respiratory droplets in COVID-19 type pandemics
,”
Phys. Fluids
32
,
063309
(
2020
).
5.
L.
Bourouiba
, “
The fluid dynamics of disease transmission
,”
Annu. Rev. Fluid Mech.
53
,
473
508
(
2021
).
6.
N.
Sen
and
K. K.
Singh
, “
When the doorbell rings in COVID-19 times: Numerical insights into some possible scenarios
,”
Phys. Fluids
33
,
045128
(
2021
).
7.
A.
Offner
and
J.
Vanneste
, “
Airborne lifetime of respiratory droplets
,”
Phys. Fluids
34
,
053320
(
2022
).
8.
V.
D'Alessandro
,
M.
Falone
,
L.
Giammichele
, and
R.
Ricci
, “
A multi-scale approach for modelling airborne transport of mucosalivary fluid
,”
Appl. Sci.
12
,
12381
(
2022
).
9.
W. R.
Oaks
,
J.
Craig
,
C.
Duran
,
F.
Sotiropoulos
, and
A.
Khosronejad
, “
On the Lagrangian dynamics of saliva particles during normal mouth breathing
,”
Phys. Fluids
34
,
041904
(
2022
).
10.
P.
Katre
,
S.
Banerjee
,
S.
Balusamy
, and
K. C.
Sahu
, “
Fluid dynamics of respiratory droplets in the context of COVID-19: Airborne and surfaceborne transmissions
,”
Phys. Fluids
33
,
081302
(
2021
).
11.
L.
Bourouiba
, “
Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19
,”
J. Am. Med. Assoc.
323
,
1837
1838
(
2020
).
12.
M. E.
Rosti
,
M.
Cavaiola
,
S.
Olivieri
,
A.
Seminara
, and
A.
Mazzino
, “
Turbulence role in the fate of virus-containing droplets in violent expiratory events
,”
Phys. Rev. Res.
3
,
013091
(
2021
).
13.
X.
Li
,
Y.
Shang
,
Y.
Yan
,
L.
Yang
, and
J.
Tu
, “
Modelling of evaporation of cough droplets in inhomogeneous humidity fields using the multi-component Eulerian-Lagrangian approach
,”
Build. Environ.
128
,
68
76
(
2018
).
14.
Y.
Ji
,
H.
Qian
,
J.
Ye
, and
X.
Zheng
, “
The impact of ambient humidity on the evaporation and dispersion of exhaled breathing droplets: A numerical investigation
,”
J. Aerosol Sci.
115
,
164
172
(
2018
).
15.
C. S.
Ng
,
K. L.
Chong
,
R.
Yang
,
M.
Li
,
R.
Verzicco
, and
D.
Lohse
, “
Growth of respiratory droplets in cold and humid air
,”
Phys. Rev. Fluids
6
,
054303
(
2021
).
16.
B.
Stiehl
,
R.
Shrestha
,
S.
Schroeder
,
J.
Delgado
,
A.
Bazzi
,
J.
Reyes
,
M.
Kinzel
, and
K.
Ahmed
, “
The effect of relative air humidity on the evaporation timescales of a human sneeze
,”
AIP Adv.
12
,
075210
(
2022
).
17.
P.
Dabisch
,
M.
Schuit
,
A.
Herzog
,
K.
Beck
,
S.
Wood
,
M.
Krause
,
D.
Miller
,
W.
Weaver
,
D.
Freeburger
,
I.
Hooper
,
B.
Green
,
G.
Williams
,
B.
Holland
,
J.
Bohannon
,
V.
Wahl
,
J.
Yolitz
,
M.
Hevey
, and
S.
Ratnesar-Shumate
, “
The influence of temperature, humidity, and simulated sunlight on the infectivity of SARS-CoV-2 in aerosols
,”
Aerosol Sci. Technol.
55
,
142
153
(
2021
).
18.
D. N.
Prata
,
W.
Rodrigues
, and
P. H.
Bermejo
, “
Temperature significantly changes COVID-19 transmission in (sub) tropical cities of brazil
,”
Sci. Total Environ.
729
,
138862
(
2020
).
19.
K. R.
Starke
,
R.
Mauer
,
E.
Karskens
,
A.
Pretzsch
,
D.
Reissig
,
A.
Nienhaus
,
A. L.
Seidler
, and
A.
Seidler
, “
The effect of ambient environmental conditions on COVID-19 mortality: A systematic review
,”
Int. J. Environ. Res. Public Health
18
,
6665
(
2021
).
20.
A.
Bahramian
,
M.
Mohammadi
, and
G.
Ahmadi
, “
Effect of indoor temperature on the velocity fields and airborne transmission of sneeze droplets: An experimental study and transient CFD modeling
,”
Sci. Total Environ.
858
,
159444
(
2023
).
21.
M. E.
Rosti
,
S.
Olivieri
,
M.
Cavaiola
,
A.
Seminara
, and
A.
Mazzino
, “
Fluid dynamics of COVID-19 airborne infection suggests urgent data for a scientific design of social distancing
,”
Sci. Rep.
10
,
22426
(
2020
).
22.
S.
Balachandar
,
S.
Zaleski
,
A.
Soldati
,
G.
Ahmadi
, and
L.
Bourouiba
, “
Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines
,”
Int. J. Multiphase Flow
132
,
103439
(
2020
).
23.
R.
Vinuesa
,
A.
Theodorou
,
M.
Battaglini
, and
V.
Dignum
, “
A socio-technical framework for digital contact tracing
,”
Results Eng.
8
,
100163
(
2020
).
24.
Y.
Li
,
G. M.
Leung
,
J. W.
Tang
,
X.
Yang
,
C. Y. H.
Chao
,
J. Z.
Lin
,
J. W.
Lu
,
P. V.
Nielsen
,
J.
Niu
,
H.
Qian
,
A. C.
Sleigh
,
H. J. J.
Su
,
J.
Sundell
,
T. W.
Wong
, and
P. L.
Yuen
, “
Role of ventilation in airborne transmission of infectious agents in the built environment—A multidisciplinary systematic review
,”
Indoor Air
17
,
2
18
(
2007
).
25.
D. S.
Thatiparti
,
U.
Ghia
, and
K. R.
Mead
, “
Computational fluid dynamics study on the influence of an alternate ventilation configuration on the possible flow path of infectious cough aerosols in a mock airborne infection isolation room
,”
Sci. Technol. Built Environ.
23
,
355
366
(
2017
).
26.
G.
Buonanno
,
L.
Stabile
, and
L.
Morawska
, “
Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment
,”
Environ. Int.
141
,
105794
(
2020
).
27.
R. K.
Bhagat
,
M. S.
Davies Wykes
,
S. B.
Dalziel
, and
P. F.
Linden
, “
Effects of ventilation on the indoor spread of COVID-19
,”
J. Fluid Mech.
903
,
F1
(
2020
).
28.
C.
Cravero
and
D.
Marsano
, “
Simulation of COVID-19 indoor emissions from coughing and breathing with air conditioning and mask protection effects
,”
Indoor Built Environ.
31
,
1242
1261
(
2022
).
29.
J. F.
Robinson
,
I.
Rios de Anda
,
F. J.
Moore
,
J. P.
Reid
,
R. P.
Sear
, and
C. P.
Royall
, “
Efficacy of face coverings in reducing transmission of COVID-19: Calculations based on models of droplet capture
,”
Phys. Fluids
33
,
043112
(
2021
).
30.
J.
Liu
,
M.
Hao
,
S.
Chen
,
Y.
Yang
,
J.
Li
,
Q.
Mei
,
X.
Bian
, and
K.
Liu
, “
Numerical evaluation of face masks for prevention of COVID-19 airborne transmission
,”
Environ. Sci. Pollut. Res.
29
,
44939
44953
(
2022
).
31.
C. J.
Kahler
and
R.
Hain
, “
Fundamental protective mechanisms of face masks against droplet infections
,”
J. Aerosol Sci.
148
,
105617
(
2020
).
32.
A.
Charvet
,
N.
Bardin-Monnier
,
D.
Thomas
,
O.
Dufaud
,
M.
Pfrimmer
,
M.
Barrault
,
S.
Bourrous
,
V.
Mocho
,
F.-X.
Ouf
,
S.
Poirier
,
L.
Jeanmichel
,
C.
Segovia
,
D.
Ferry
, and
O.
Grauby
, “
Impact of washing cycles on the performances of face masks
,”
J. Aerosol Sci.
160
,
105914
(
2022
).
33.
T.
Solano
,
C.
Ni
,
R.
Mittal
, and
K.
Shoele
, “
Perimeter leakage of face masks and its effect on the mask's efficacy
,”
Phys. Fluids
34
,
051902
(
2022
).
34.
Y.
Narayan
,
S.
Chatterjee
,
A.
Agrawal
, and
R.
Bhardwaj
, “
Assessing effectiveness and comfortability of a two-layer cloth mask with a high-efficiency particulate air (HEPA) insert to mitigate COVID-19 transmission
,”
Phys. Fluids
34
,
061703
(
2022
).
35.
R.
Navarro
and
R.
Vinuesa
, “
Utility model: Device to deliver a filtered air flow
,” Spanish Official Bulletin of Industrial Property patent ES1259855U, TRITA-SCI-RAP 2021:002 (1 February 2021).
36.
M.
Cavaiola
,
S.
Olivieri
,
J.
Guerrero
,
A.
Mazzino
, and
M. E.
Rosti
, “
Role of barriers in the airborne spread of virus-containing droplets: A study based on high-resolution direct numerical simulations
,”
Phys. Fluids
34
,
015104
(
2022
).
37.
M. L.
Salby
,
Fundamental of Atmospheric Physics
(
Elsevier
,
1996
).
38.
G.
Boffetta
and
A.
Mazzino
, “
Incompressible Rayleigh–Taylor turbulence
,”
Annu. Rev. Fluid Mech.
49
,
119
143
(
2017
).
39.
M. R.
Maxey
and
J. J.
Riley
, “
Equation of motion for a small rigid sphere in a nonuniform flow
,”
Phys. Fluids
26
,
883
889
(
1983
).
40.
L.-P.
Wang
and
M. R.
Maxey
, “
Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence
,”
J. Fluid Mech.
256
,
27
68
(
1993
).
41.
L.
Bourouiba
,
E.
Dehandschoewercker
, and
J. W.
Bush
, “
Violent expiratory events: On coughing and sneezing
,”
J. Fluid Mech.
745
,
537
563
(
2014
).
42.
H. R.
Pruppacher
and
J. D.
Klett
,
Microphysics of Clouds and Precipitation
(
Springer, The Netherlands
,
2010
).
43.
A.
Celani
,
G.
Falkovich
,
A.
Mazzino
, and
A.
Seminara
, “
Droplet condensation in turbulent flows
,”
Europhys. Lett.
70
,
775
(
2005
).
44.
A.
Celani
,
A.
Mazzino
, and
M.
Tizzi
, “
The equivalent size of cloud condensation nuclei
,”
New J. Phys.
10
,
075021
(
2008
).
45.
A.
Celani
,
A.
Mazzino
, and
M.
Tizzi
, “
Droplet feedback on vapor in a warm cloud
,”
Int. J. Mod. Phys. B
23
,
5434
5443
(
2009
).
46.
L.
Morawska
,
G.
Johnson
,
Z.
Ristovski
,
M.
Hargreaves
,
K.
Mengersen
,
S.
Corbett
,
C. Y. H.
Chao
,
Y.
Li
, and
D.
Katoshevski
, “
Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities
,”
J. Aerosol Sci.
40
,
256
269
(
2009
).
47.
J. K.
Gupta
,
C.-H.
Lin
, and
Q.
Chen
, “
Flow dynamics and characterization of a cough
,”
Indoor Air
19
,
517
525
(
2009
).
48.
J.
Duguid
, “
The size and the duration of air-carriage of respiratory droplets and droplet-nuclei
,”
Epidemiol. Infect.
44
,
471
479
(
1946
).
49.
M.
Kennedy
,
S. J.
Lee
, and
M.
Epstein
, “
Modeling aerosol transmission of SARS-CoV-2 in multi-room facility
,”
J. Loss Prev. Process Ind.
69
,
104336
(
2021
).
50.
N.
Hori
,
M. E.
Rosti
, and
S.
Takagi
, “
An Eulerian-based immersed boundary method for particle suspensions with implicit lubrication model
,”
Comput. Fluids
236
,
105278
(
2022
).
51.
T.
Kajishima
,
S.
Takiguchi
,
H.
Hamasaki
, and
Y.
Miyake
, “
Turbulence structure of particle-laden flow in a vertical plane channel due to vortex shedding
,”
JSME Int. J. Ser. B
44
,
526
535
(
2001
).
52.
A.
Mazzino
and
M. E.
Rosti
, “
Unraveling the secrets of turbulence in a fluid puff
,”
Phys. Rev. Lett.
127
,
094501
(
2021
).
53.
A.
Mazzino
and
M. E.
Rosti
, “
Puff turbulence in the limit of strong buoyancy
,”
Philos. Trans. R. Soc. A
380
,
20210093
(
2022
).
54.
S.
Olivieri
,
M.
Cavaiola
,
A.
Mazzino
, and
M. E.
Rosti
, “
Transport and evaporation of virus-containing droplets exhaled by men and women in typical cough events
,”
Meccanica
57
,
567
575
(
2022
).
55.
J.
Xu
,
H.
Guo
,
Y.
Zhang
, and
X.
Lyu
, “
Effectiveness of personalized air curtain in reducing exposure to airborne cough droplets
,”
Build. Environ.
208
,
108586
(
2022
).
You do not currently have access to this content.