The destructive implication of pressure-flow scour during flood events is a critical issue for researchers throughout the world. The current paper presents two models to estimate the pressure-flow scour depth underneath a partially submerged bridge deck in the equilibrium phase based on the jet flow theory. An estimate of the submergence distance of the jet flow under the bridge deck is the base point of the first model. The second model uses the phenomenological theory of turbulence where the tangential component of jet velocity is scaled to the velocity of the eddy formed under the bridge deck. This theory has already been used by researchers to estimate the scour depth of the jet flow. Dimensionless parameters are constructed in the theoretical framework of both models. The angle and velocity of the combined jet under the bridge deck and the effective depth underneath the bridge deck have been obtained using the relations presented in the previous research. The application of the presented models is limited to cases where the relative opening height of the bridge deck is greater than 0.25. The derived equations of the current study are calibrated based on the data with sufficient time durations. The results show that both models predict fairly well the maximum pressure-flow scour depth. The values of Nash–Sutcliffe efficiency and relative root mean square errors of the second model predictions are more appropriate, compared to the estimates of the first model and estimates obtained by equations presented in the previous studies.

1.
Aderibigbe
,
O. O.
, and
Rajaratnam
,
N.
, “
Erosion of loose beds by submerged circular impinging vertical turbulent jets
,”
J. Hydraul. Res.
34
(
1
),
19
33
(
1996
).
2.
Alabi
,
P. D.
, “
Time development of local scour at a bridge pier fitted with a collar
,” Ph.D. thesis (
University of Saskatchewan
,
2006
).
3.
Baduna Kocyigit
,
M.
, and
Karakurt
,
O.
, “
Pressure flow and weir scour beneath a bridge deck
,”
Can. J. Civ. Eng.
46
(
6
),
534
543
(
2019
).
4.
Baduna Koçyiğit
,
M.
,
Karakurt
,
O.
, and
Akay
,
H.
, “
Effect of various flow, sediment and geometrical parameters on partially or fully submerged deck scour
,”
SN Appl. Sci.
3
(
3
),
1
17
(
2021
).
5.
Bombardelli
,
F. A.
, and
Gioia
,
G.
, “
Scouring of granular beds by jet-driven axisymmetric turbulent cauldrons
,”
Phys. Fluids
18
(
8
),
088101
(
2006
).
6.
Bombardelli
,
F. A.
,
Palermo
,
M.
, and
Pagliara
,
S.
, “
Temporal evolution of jet induced scour depth in cohesionless granular beds and the phenomenological theory of turbulence
,”
Phys. Fluids
30
(
8
),
085109
(
2018
).
7.
Carnacina
,
I.
,
Leonardi
,
N.
, and
Pagliara
,
S.
, “
Characteristics of flow structure around cylindrical bridge piers in pressure-flow conditions
,”
Water
11
(
11
),
2240
(
2019b
).
8.
Carnacina
,
I.
,
Pagliara
,
S.
, and
Leonardi
,
N.
, “
Bridge pier scour under pressure flow conditions
,”
River Res. Appl.
35
(
7
),
844
854
(
2019a
).
9.
Coscarella
,
F.
,
Curulli
,
G.
,
Penna
,
N.
, and
Gaudio
,
R.
, “
Physically based formula for the maximum scour depth induced by a propeller jet
,”
Phys. Fluids
35
(
3
),
035113
(
2023
).
10.
Cui
,
W. R.
,
Chen
,
J. G.
,
Zhao
,
W. Y.
, and
Chen
,
X. Q.
, “
Characteristics of wake morphology during debris flow when passing a cylindrical obstacle
,”
Phys. Fluids
35
(
11
),
116604
(
2023
).
11.
Froehlich
,
D. C.
, “
Neural network prediction of maximum scour in bends of sand-bed rivers
,”
J. Hydraul. Eng.
146
(
10
),
04020065
(
2020
).
12.
Gioia
,
G.
, and
Bombardelli
,
F. A.
, “
Localized turbulent flows on scouring granular beds
,”
Phys. Rev. Lett.
95
(
1
),
014501
(
2005
).
13.
Gioia
,
G.
, and
Bombardelli
,
F. A.
, “
Scaling and similarity in rough channel flows
,”
Phys. Rev. Lett.
88
(
1
),
014501
(
2001
).
14.
Gioia
,
G.
, and
Chakraborty
,
P.
, “
Turbulent friction in rough pipes and the energy spectrum of the phenomenological theory
,”
Phys. Rev. Lett.
96
(
4
),
044502
(
2006
).
15.
Gioia
,
G.
,
Guttenberg
,
N.
,
Goldenfeld
,
N.
, and
Chakraborty
,
P.
, “
Spectral theory of the turbulent mean-velocity profile
,”
Phys. Rev. Lett.
105
(
18
),
184501
(
2010
).
16.
Guo
,
J.
, “
Time-dependent clear-water scour for submerged bridge flows
,”
J. Hydraul. Res.
49
(
6
),
744
749
(
2011
).
17.
Guo
,
J.
,
Kerenyi
,
K.
, and
Pagan-Ortiz
,
J. E.
, “
Bridge pressure flow scour for clear water conditions
,”
Report No. FHWA-HRT-09-041
,
2009
.
18.
He
,
G.
,
Fang
,
H.
,
Wang
,
J.
, and
Zhang
,
T.
, “
From fluvial dynamics to eco-fluvial dynamics
,”
Int. J. Sediment Res.
34
(
6
),
531
536
(
2019
).
19.
Hoffmans
,
G. J.
, “
Jet scour in equilibrium phase
,”
J. Hydraul. Eng.
124
(
4
),
430
438
(
1998
).
20.
Hoffmans
,
I. G. J.
, “
Closure problem to jet scour
,”
J. Hydraul. Res.
47
(
1
),
100
109
(
2009
).
21.
Hoffmans
,
G.
, and
Verheij
,
H.
, “
Jet scour
,”
Inst. Civ. Eng. Proc. Marit. Eng.
164
(
4
),
185
193
(
2011
).
22.
Hou
,
J.
,
Zhang
,
L.
,
Gong
,
Y.
,
Ning
,
D.
, and
Zhang
,
Z.
, “
Theoretical and experimental study of scour depth by submerged water jet
,”
Adv. Mech. Eng.
8
(
12
),
168781401668239
(
2016
).
23.
Koushki
,
M.
,
Chamani
,
M. R.
, and
Moghim
,
M. N.
, “
Assessment of equilibrium pressure-flow scour depth using jet flow theory
,”
Int. J. Sediment Res.
38
(
1
),
141
151
(
2023
).
24.
Kumcu
,
S. Y.
, “
Steady and unsteady pressure scour under bridges at clear-water conditions
,”
Can. J. Civ. Eng.
43
(
4
),
334
342
(
2016
).
25.
Li
,
J.
, and
Chen
,
X.
, “
A multi-dimensional two-phase mixture model for intense sediment transport in sheet flow and around pipeline
,”
Phys. Fluids
34
(
10
),
103314
(
2022
).
26.
Liu
,
Y.
,
Garambois
,
P. A.
,
Terfous
,
A.
, and
Ghenaim
,
A.
, “
Experimental investigations and three-dimensional computational fluid dynamics modeling of sediment transport in tanks influenced by cavities
,”
Phys. Fluids
35
(
9
),
093304
(
2023
).
27.
Lyn
,
D. A.
, “
Pressure-flow scour: A reexamination of the HEC-18 equation
,”
J. Hydraul. Eng.
134
(
7
),
1015
1020
(
2008
).
28.
Majid
,
S. A.
, and
Tripathi
,
S.
, “
Experimental study on pressure flow due to vertical contraction
,” in
Innovative Trends in Hydrological and Environmental Systems
(
Singapore
,
2022
).
29.
Majid
,
S. A.
, and
Tripathi
,
S.
, “
Pressure-flow scour due to vertical contraction: A review
,”
J. Hydraul. Eng.
147
(
12
),
03121002
(
2021
).
30.
Nasiri-Dehsorkhi
,
E.
,
Chamani
,
M. R.
, and
Kabiri-Samani
,
A.
, “
Characteristics of flow around a cylindrical pier under a partially submerged bridge deck
,”
Proc. Inst. Civ. Eng. Water. Manag.
174
(
4
),
159
172
(
2021
).
31.
Nasiri-Dehsorkhi
,
E.
, “
Experimental and numerical investigation of pressure-flow clear-water scour in submerged regime around bridge piers
,” Ph.D. thesis (
Isfahan University of Technology
,
2020
).
32.
Neill
,
C. R.
,
Guide to Bridge Hydraulics
(
Roads and Transportation Association of Canada
,
1973
).
33.
Palermo
,
M.
,
Bombardelli
,
F. A.
,
Pagliara
,
S.
, and
Kuroiwa
,
J.
, “
Time-dependent scour processes on granular beds at large scale
,”
Environ. Fluid Mech.
21
(
4
),
791
816
(
2021
).
34.
Palermo
,
M.
,
Pagliara
,
S.
, and
Bombardelli
,
F. A.
, “
Theoretical approach for shear-stress estimation at 2D equilibrium scour holes in granular material due to subvertical plunging jets
,”
J. Hydraul. Eng.
146
(
4
),
04020009
(
2020
).
35.
Pope
,
S. B.
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
36.
Sheppard
,
D. M.
,
Odeh
,
M.
, and
Glasser
,
T.
, “
Large scale clear-water local pier scour experiments
,”
J. Hydraul. Eng.
130
(
10
),
957
963
(
2004
).
37.
Shim
,
J.
, and
Duan
,
J.
, “
Experimental and theoretical study of bed load particle velocity
,”
J. Hydraul. Res.
57
(
1
),
62
74
(
2019
).
38.
Tofany
,
N.
,
Low
,
Y. M.
,
Lee
,
C. H.
, and
Chiew
,
Y. M.
, “
Two-phase flow simulation of scour beneath a vibrating pipeline during the tunnel erosion stage
,”
Phys. Fluids
31
(
11
),
113302
(
2019
).
39.
Umbrell
,
E. R.
,
Young
,
G. K.
,
Stein
,
S. M.
, and
Jones
,
J. S.
, “
Clear-water contraction scour under bridges in pressure flow
,”
J. Hydraul. Eng.
124
(
2
),
236
240
(
1998
).
40.
Verma
,
D. V. S.
,
Setia
,
B.
, and
Bhatia
,
U.
, “
Constriction scour in pressurized flow condition
,”
Int. J. Eng.
17
(
3
),
237
246
(
2004
).
41.
Whittaker
,
J. G.
, and
Schleiss
,
A.
,
Scour Related to Energy Dissipators for High Head Structures
(
ETH Zürich
,
1984
).
42.
Zhou
,
K.
,
Duan
,
J. G.
, and
Bombardelli
,
F. A.
, “
Experimental and theoretical study of local scour around three-pier group
,”
J. Hydraul. Eng.
146
(
10
),
04020069
(
2020
).
You do not currently have access to this content.