This research aims to explore the impact of cross-sectional aspect ratio (AR), power-law index (n), Reynolds number (Re), and Prandtl number (Pr) on convective heat transfer rates using the Nusselt number (Nu) and coefficient of drag (CD) as a key metric. Numerical simulations employ the ANSYS FLUENT solver with the finite volume method. The SIMPLE scheme couples pressure and velocity, and the QUICK differencing scheme discretizes convective terms. This study varies the aspect ratio by adjusting the length-to-width ratio (b/D) to explore different configurations of AR = 1–5 and Pr = 0.7, 1, and 7, which investigate 5  Re  10 and 0.2  n  1, respectively. An increase in the Reynolds number is observed to diminish the thermal boundary layer thickness, resulting in an escalation of heat transfer rates. Additionally, the Nusselt number exhibits an upward trend with an increase in the Prandtl number. The investigation reveals a decrease in Nu with an increase in both AR and n. Specifically, higher aspect ratios and power-law indices are associated with reduced heat transfer rates. The AR emerges as a significant factor, influencing the coefficient of drag, with CD values showing an increase as AR rises, particularly at low Re. Moreover, CD is found to increase with an elevation in the n value. This study explores new ground by investigating power-law fluid behavior and heat transfer phenomenon across varied aspect ratios. These insights not only enhance the design of heat transfer systems with non-Newtonian fluids but also pave the way for future research in this less explored domain.

1.
G.
Verma
and
S.
Singh
, “
Computational multiphase iterative solution procedure for thermal performance investigation of phase change material embedded parallel flow solar air heater
,”
J. Energy Storage
39
,
102642
(
2021
).
2.
G.
Verma
,
S.
Singh
,
S.
Chander
, and
P.
Dhiman
, “
Numerical investigation on transient thermal performance predictions of phase change material embedded solar air heater
,”
J. Energy Storage
47
,
103619
(
2022
).
3.
R. P.
Chhabra
and
J. F.
Richardson
,
Non-Newtonian Flow and Applied Rheology: Engineering Applications
(
Butterworth-Heinemann
,
2011
).
4.
S.
Haeri
and
J.
Shrimpton
, “
A correlation for the calculation of the local Nusselt number around circular cylinders in the range 10 ⩽ Re ⩽ 250 and 0.1 ⩽ Pr ⩽ 40
,”
Int. J. Heat Mass Transfer
59
,
219
(
2013
).
5.
P. K.
Rao
,
A. K.
Sahu
, and
R.
Chhabra
, “
Momentum and heat transfer from a square cylinder in power-law fluids
,”
Int. J. Heat Mass Transfer
54
,
390
(
2011
).
6.
A. K.
Sahu
,
R.
Chhabra
, and
V.
Eswaran
, “
Forced convection heat transfer from a heated square cylinder to power law fluids in the unsteady flow regime
,”
Numer. Heat Transfer, Part A
56
,
109
(
2009
).
7.
P. K.
Rao
,
C.
Sasmal
,
A. K.
Sahu
,
R.
Chhabra
, and
V.
Eswaran
, “
Effect of power-law fluid behavior on momentum and heat transfer characteristics of an inclined square cylinder in steady flow regime
,”
Int. J. Heat Mass Transfer
54
,
2854
(
2011
).
8.
A.
Mashhadi
,
A.
Sohankar
, and
M. M.
Alam
, “
Flow over rectangular cylinder: Effects of cylinder aspect ratio and Reynolds number
,”
Int. J. Mech. Sci.
195
,
106264
(
2021
).
9.
A.
Mashhadi
and
A.
Sohankar
, “
Two- and three-dimensional simulations of flow and heat transfer around rectangular cylinders
,”
Comput. Fluids
249
,
105689
(
2022
).
10.
Z.
Sert
,
N.
Mahir
, and
Z.
Altaç
, “Numerical investigation of mixed convection from rectangular cylinders subjected to upper cross flow”
Numer. Heat Transfer, Part A
85
(4),
570
591
(
2024
).
11.
C.
Norberg
, “
Flow around rectangular cylinders: Pressure forces and wake frequencies
,”
J. Wind Eng. Ind. Aerodyn.
49
,
187
(
1993
).
12.
P.
Ranjan
and
A.
Dewan
, “
Effect of side ratio on fluid flow and heat transfer from rectangular cylinders using the PANS method
,”
Int. J. Heat Fluid Flow
61
,
309
(
2016
).
13.
T.
Igarashi
and
Y.
Mayumi
, “
Fluid flow and heat transfer around a rectangular cylinder with small inclined angle (the case of a width/height ratio of a section of 5)
,”
Int. J. Heat Fluid Flow
22
,
279
(
2001
).
14.
T.
Igarashi
, “
Fluid flow and heat transfer around rectangular cylinders (the case of a width/height ratio of a section of 0.33 ∼ 1.5)
,”
Int. J. Heat Mass Transfer
30
,
893
(
1987
).
15.
A.
Sohankar
,
C.
Norbergb
, and
L.
Davidson
, “
Numerical simulation of unsteady low-Reynolds number flow around rectangular cylinders at incidence
,”
J. Wind Eng. Ind. Aerodyn.
69–71
,
189
(
1997
).
16.
A.
Sohankar
, “
Large eddy simulation of flow past rectangular-section cylinders: Side ratio effects
,”
J. Wind Eng. Ind. Aerodyn.
96
,
640
(
2008
).
17.
Y. G.
Park
,
H. S.
Yoon
, and
M. Y.
Ha
, “
Numerical study on the laminar fluid flow characteristics around a rectangular cylinder with different width to height ratios
,”
Prog. Comput. Fluid Dyn.
13
,
244
(
2013
).
18.
J.
Ortega-Casanova
, “
On the onset of vortex shedding from 2D confined rectangular cylinders having different aspect ratios: Application to promote mixing fluids
,”
Chem. Eng. Process.
120
,
81
(
2017
).
19.
P.
Bearman
and
D.
Trueman
, “
An investigation of the flow around rectangular cylinders
,”
Aeronaut. Q.
23
,
229
(
1972
).
20.
Y.
Nakamura
,
Y.
Ohya
,
S.
Ozono
, and
R.
Nakayama
, “
Experimental and numerical analysis of vortex shedding from elongated rectangular cylinders at low Reynolds numbers 200–103
,”
J. Wind Eng. Ind. Aerodyn.
65
,
301
(
1996
).
21.
S.
Nakagawa
,
K.
Nitta
, and
M.
Senda
, “
An experimental study on unsteady turbulent near wake of a rectangular cylinder in channel flow
,”
Exp. Fluids
27
,
284
(
1999
).
22.
I.
Taylor
and
M.
Vezza
, “
Prediction of unsteady flow around square and rectangular section cylinders using a discrete vortex method
,”
J. Wind Eng. Ind. Aerodyn.
82
,
247
(
1999
).
23.
K.
Shimada
and
T.
Ishihara
, “
Application of a modified k–ε model to the prediction of aerodynamic characteristics of rectangular cross-section cylinders
,”
J. Fluids Struct.
16
,
465
(
2002
).
24.
S.
Tanweer
,
A.
Dewan
, and
S.
Sanghi
, “
Three-dimensional wake transitions past a rectangular cylinder placed near a moving wall: Influence of aspect and gap ratios
,”
Ocean Eng.
219
,
108288
(
2021
).
25.
P.
Kumar
and
S.
Tiwari
, “
Wake transition for surface mounted rectangular cylinder due to incoming shear flow
,”
Int. J. Heat Fluid Flow
85
,
108614
(
2020
).
26.
A.
Okajima
, “
Strouhal numbers of rectangular cylinders
,”
J. Fluid Mech.
123
,
379
(
1982
).
27.
J.
Courchesne
and
A.
Laneville
, “
An experimental evaluation of drag coefficient for rectangular cylinders exposed to grid turbulence
,”
J. Fluids Eng.
104
,
523
(
1982
).
28.
G.
Yang
and
J.
Wu
, “
Effect of side ratio and aiding/opposing buoyancy on the aerodynamic and heat transfer characteristics around a rectangular cylinder at low Reynolds Numbers
,”
Numer. Heat Transfer, Part A
64
,
1016
(
2013
).
29.
R.
Dobriyal
,
M.
Mishra
,
M.
Bölander
, and
M.
Skote
, “
Effects of streamlining a bluff body in the laminar vortex shedding regime
,”
J. Fluids Eng.
142
,
024501
(
2020
).
30.
P.
Kumar
and
S. K.
Singh
, “
Flow past a bluff body subjected to lower subcritical Reynolds number
,”
J. Ocean Eng. Sci.
5
,
173
(
2020
).
31.
A.
Etminan
,
A.
Bodaghkhani
, and
Y. S.
Muzychka
, “
Numerical Simulation of Laminar Vortex-Shedding Flow around a very Slender and Rectangular Bluff Body
”,
J. Fluid Flow, Heat Mass Transfer
7
,
37
(
2020
).
32.
G.
Sharma
,
B.
Verma
, and
R.
Barman
, “
Steady flow of power-law fluids past a slotted circular cylinder at low Reynolds number
,”
Phys. Fluids
34
,
093615
(
2022
).
33.
A. K.
Dhiman
and
S.
Kumar
, “
Non-Newtonian power-law flow across a confined triangular bluff body in a channel
,”
Korean J. Chem. Eng.
30
,
33
(
2013
).
34.
A.
Sharma
and
V.
Eswaran
, “
Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime
,”
Numer. Heat Transfer, Part A.
45
,
247
(
2004
).
35.
N.
Sharma
,
A.
Dhiman
, and
S.
Kumar
, “
Non-Newtonian power-law fluid flow around a heated square bluff body in a vertical channel under aiding buoyancy
,”
Numer. Heat Transfer, Part A
64
,
777
(
2013
).
36.
L.-C.
Hsu
, “
Heat transfer of flow past a cylinder with a slit
,”
Int. J. Therm. Sci.
159
,
106582
(
2021
).
37.
A. H.
Majeed
,
F.
Jarad
,
R.
Mahmood
, and
I.
Saddique
, “
Topological characteristics of obstacles and nonlinear rheological fluid flow in presence of insulated fins: A fluid force reduction study
,”
Math. Probl. Eng.
2021
,
9199512
.
38.
R.
Mahmood
,
A. H.
Majeed
,
K.
Usman
,
A. Z.
Jan
,
I.
Khan
,
S. M.
Eldin
,
K.
Jamil
, and
Y.
Arif
, “
Temporal features of thermal flows over a rotating cylinder in a channel: Multigrid based simulations
,”
Case Stud. Therm. Eng.
52
,
103602
(
2023
).
39.
A.
Hussain Majeed
,
R.
Mahmood
,
N. N.
Hamadneh
,
I.
Siddique
,
I.
Khan
, and
N.
Alshammari
, “
Periodic flow of non-Newtonian fluid over a uniformly heated block with thermal plates: A hybrid mesh-based study
,”
Front. Phys.
10
,
195
(
2022
).
40.
W. S.
Abbasi
,
S.
Ismail
,
S.
Nadeem
,
H.
Rahman
,
A. H.
Majeed
,
I.
Khan
, and
A.
Mohamed
, “
Passive control of wake flow behind a square cylinder using a flat plate
,”
Front. Phys.
11
,
1132926
(
2023
).
41.
A. H.
Majeed
,
R.
Mahmood
,
W. S.
Abbasi
, and
K.
Usman
, “
Numerical computation of MHD thermal flow of cross model over an elliptic cylinder: Reduction of forces via thickness ratio
,”
Math. Probl. Eng.
2021
,
2550440
.
42.
A. H.
Majeed
,
R.
Mahmood
,
D.
Liu
,
M. R.
Ali
,
A. S.
Hendy
,
B.
Zhao
, and
H.
Sajjad
, “
Flow and heat transfer analysis over a pair of heated bluff bodies in a channel: Characteristics of non-linear rheological models
,”
Case Stud. Therm. Eng.
53
,
103827
(
2024
).
43.
R.
Mahmood
,
A. H.
Majeed
,
Q. u
Ain
,
J.
Awrejcewicz
,
I.
Siddique
, and
H.
Shahzad
, “
Computational analysis of fluid forces on an obstacle in a channel driven cavity: Viscoplastic material based characteristics
,”
Materials
15
,
529
(
2022
).
44.
A.
Dhiman
,
R.
Chhabra
, and
V.
Eswaran
, “
Steady flow of power-law fluids across a square cylinder
,”
Chem. Eng. Res. Des.
84
,
300
(
2006
).
45.
Ansys Fluent
, “Ansys Fluent 14.5 User’s Guide,” (
ANSYS, Inc
.,
Canonsburg, PA
,
2012
).
46.
R. B.
Bird
, “
Transport phenomena
,”
Appl. Mech. Rev.
55
,
R1
(
2002
).
You do not currently have access to this content.