The topic of flows around a near-wall square cylinder has garnered increasing attention in recent decades. However, there are a few publications that have focused on mitigating the occurrence of a substantial negative lift in near-wall flows. In light of this, the present study has developed a novel flow control strategy that covers porous media at inward corners of a near-wall square cylinder to address this problem. We achieve such a control strategy with the aid of a high-fidelity computational framework at Re = 1000. Direct numerical simulations are employed to account for accurate flow behaviors, and the Cartesian cut-cell method as well as an adaptive mesh refinement algorithm are advocated to simplify grid generation and reduce computational costs. Additionally, a quasi-microscopic flow model is introduced to model the porous medium pore structure, providing an intuitive and accurate description of internal flows within the porous medium. Six porous medium layouts are first designed, and their influences and mechanisms on flow control are assessed using the presented computational framework to identify an optimal strategy. The optimal strategy yields a notable reduction of 52.472% in the lift coefficient. The identified strategy is then applied to a case involving a near-wall square cylinder with a substantial negative lift, where a gap ratio of 0.6 is determined via parameterization. The capacity of the presented strategy in flow control of the near-wall square cylinder is fully explored and demonstrated via the consideration of different porosities. The results indicate that the most effective flow control is achieved when the porosity exceeds 90%, leading to a near-zero lift coefficient. Furthermore, the underlying mechanism contributing to the variations in flow control effectiveness due to different porosities is analyzed.

1.
X.
Wang
and
S.
Tan
, “
Comparison of flow patterns in the near wake of a circular cylinder and a square cylinder placed near a plane wall
,”
Ocean Eng.
35
,
458
472
(
2008
).
2.
X. K.
Wang
,
Z.
Hao
,
J.-X.
Zhang
, and
S. K.
Tan
, “
Flow around two tandem square cylinders near a plane wall
,”
Exp. Fluids
55
,
1818
(
2014
).
3.
W.
Chen
,
C.
Ji
,
D.
Xu
, and
J.
Williams
, “
Two-degree-of-freedom vortex-induced vibrations of a circular cylinder in the vicinity of a stationary wall
,”
J. Fluids Struct.
91
,
102728
(
2019
).
4.
F.
Yang
,
Z.
Zhou
,
G.
Tang
, and
L.
Lu
, “
Steady flow around a square cylinder near a plane boundary
,”
Ocean Eng.
222
,
108599
(
2021
).
5.
F.
Yang
,
B.
Peng
,
M.
Liu
, and
X.
Jin
, “
Large eddy simulation on a square cylinder near a plane boundary
,”
Ocean Eng.
245
,
109953
(
2022
).
6.
H.
Zhu
,
T.
Tang
,
H.
Zhao
,
Y.
Gao
, and
X.
Zhang
, “
An insight into the vortex-induced vibration of a near-wall flexible pipe in the presence of wall impact
,”
Phys. Fluids
35
,
117126
(
2023
).
7.
M. P.
Arnal
,
D. J.
Goering
, and
J. A. C.
Humphrey
, “
Vortex shedding from a bluff body adjacent to a plane sliding wall
,”
J. Fluids Eng.
113
,
384
398
(
1991
).
8.
S.
Bhattacharyya
and
D. K.
Maiti
, “
Vortex shedding from a square cylinder in presence of a moving wall
,”
Int. J. Numer. Methods Fluids
48
,
985
1000
(
2005
).
9.
S.
Tanweer
,
A.
Dewan
, and
S.
Sanghi
, “
Influence of three-dimensional wake transition on heat transfer from a square cylinder near a moving wall
,”
Int. J. Heat Mass Transfer
148
,
118986
(
2020
).
10.
R. S.
Rajpoot
,
K.
Anirudh
, and
S.
Dhinakaran
, “
Numerical investigation of unsteady flow across tandem square cylinders near a moving wall at Re = 100
,”
Case Stud. Therm. Eng.
26
,
101042
(
2021
).
11.
S.
Tanweer
,
A.
Dewan
, and
S.
Sanghi
, “
Influence of gap-ratio on flow dynamics and heat transfer for a square cylinder approaching a moving wall in turbulent regime
,”
Int. J. Heat Mass Transfer
172
,
121122
(
2021
).
12.
S.
Tanweer
,
A.
Dewan
, and
S.
Sanghi
, “
Effects of wake confinement and buoyancy on three-dimensional flow transitions for a square cylinder near a moving wall
,”
Phys. Fluids
33
,
114102
(
2021
).
13.
G.
Bosch
,
M.
Kappler
, and
W.
Rodi
, “
Experiments on the flow past a square cylinder placed near a wall
,”
Exp. Therm. Fluid Sci.
13
,
292
305
(
1996
).
14.
R. R.
Hwang
and
C.-C.
Yao
, “
A numerical study of vortex shedding from a square cylinder with ground effect
,”
J. Fluids Eng.
119
,
512
518
(
1997
).
15.
D.
Kumar
and
A.
Dhiman
, “
Computations of Newtonian fluid flow around a square cylinder near an adiabatic wall at low and intermediate Reynolds numbers: Effects of crossbuoyancy mixed convection
,”
Numer. Heat Transfer, Part A
70
,
162
186
(
2016
).
16.
S.
Bailey
,
G.
Kopp
, and
R.
Martinuzzi
, “
Vortex shedding from a square cylinder near a wall
,”
J. Turbul.
3
,
N3
(
2002
).
17.
R. J.
Martinuzzi
,
S. C. C.
Bailey
, and
G. A.
Kopp
, “
Influence of wall proximity on vortex shedding from a square cylinder
,”
Exp. Fluids
34
,
585
596
(
2003
).
18.
S.
Bhattacharyya
and
D.
Maiti
, “
Shear flow past a square cylinder near a wall
,”
Int. J. Eng. Sci.
42
,
2119
2134
(
2004
).
19.
T.-Y.
Kim
,
B.-S.
Lee
, and
D.-H.
Lee
, “
Study on the unsteady wakes past a square cylinder near a wall
,”
J. Mech. Sci. Technol.
19
,
1169
1181
(
2005
).
20.
S.
Bhattacharyya
and
D. K.
Maiti
, “
Vortex shedding suppression for laminar flow past a square cylinder near a plane wall: A two-dimensional analysis
,”
Acta Mech.
184
,
15
31
(
2006
).
21.
N.
Mahir
, “
Three-dimensional flow around a square cylinder near a wall
,”
Ocean Eng.
36
,
357
367
(
2009
).
22.
P.
Ranjan
and
A.
Dewan
, “
A PANS study of fluid flow and heat transfer from a square cylinder approaching a plane wall
,”
Int. J. Therm. Sci.
120
,
321
336
(
2017
).
23.
A.
Sohankar
,
M.
Khodadadi
,
E.
Rangraz
, and
M. M.
Alam
, “
Control of flow and heat transfer over two inline square cylinders
,”
Phys. Fluids
31
,
123604
(
2019
).
24.
A.
Karmakar
and
A. K.
Saha
, “
Unsteady flow past a square cylinder placed close to a free surface
,”
Phys. Fluids
32
,
123610
(
2020
).
25.
H.
Chalmers
,
X.
Fang
, and
M. F.
Tachie
, “
Gap ratio effects on the coherent structures surrounding a near-wall square cylinder
,”
Int. J. Heat Fluid Flow
100
,
109114
(
2023
).
26.
Z.
Pan
,
Z.
Chen
, and
H.
Wu
, “
Self-excited rotation and flow dynamics across a freely rotatable square cylinder confined between two parallel walls
,”
Phys. Fluids
31
,
087109
(
2019
).
27.
H.
Chalmers
,
X.
Fang
,
S.
Addai
, and
M. F.
Tachie
, “
The effects of wall roughness on the flow dynamics behind a near-wall square cylinder
,”
Exp. Fluids
63
,
123
(
2022
).
28.
A. J.
Grass
,
P. W. J.
Raven
,
R. J.
Stuart
, and
J. A.
Bray
, “
The influence of boundary layer velocity gradients and bed proximity on vortex shedding from free spanning pipelines
,”
J. Energy Resour. Technol.
106
,
70
78
(
1984
).
29.
L.
Zhou
,
M.
Cheng
, and
K.
Hung
, “
Suppression of fluid force on a square cylinder by flow control
,”
J. Fluids Struct.
21
,
151
167
(
2005
).
30.
S.-U.
Islam
,
R.
Manzoor
,
Z.-U.
Islam
,
S.
Kalsoom
, and
Z. C.
Ying
, “
A computational study of drag reduction and vortex shedding suppression of flow past a square cylinder in presence of small control cylinders
,”
AIP Adv.
7
,
045119
(
2017
).
31.
C.-H.
Bruneau
and
I.
Mortazavi
, “
Passive control of the flow around a square cylinder using porous media
,”
Int. J. Numer. Methods Fluids
46
,
415
433
(
2004
).
32.
Y.
Hui
,
J.
Liu
,
J.
Wang
, and
Q.
Yang
, “
Effects of facade rib arrangement on aerodynamic characteristics and flow structure of a square cylinder
,”
Build. Environ.
214
,
108924
(
2022
).
33.
J.
Liu
,
Y.
Hui
,
S.
Li
, and
Y.
Jiang
, “
Numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs
,”
Comput. Fluids
245
,
105609
(
2022
).
34.
T.
Durhasan
, “
Flow topology downstream of the hollow square cylinder with slots
,”
Ocean Eng.
209
,
107518
(
2020
).
35.
D.
Gao
,
H.
Meng
,
Y.
Huang
,
G.
Chen
, and
W.-L.
Chen
, “
Active flow control of the dynamic wake behind a square cylinder using combined jets at the front and rear stagnation points
,”
Phys. Fluids
33
,
047101
(
2021
).
36.
S.
Li
,
Z.
Luo
,
X.
Deng
,
W.
Peng
, and
Z.
Liu
, “
Experimental investigation on active control of flow around a finite-length square cylinder using dual synthetic jet
,”
J. Wind Eng. Ind. Aerodyn.
210
,
104519
(
2021
).
37.
X.
Chang
,
W.-L.
Chen
,
Y.
Huang
, and
D.
Gao
, “
Dynamics of the forced wake of a square cylinder with embedded flapping jets
,”
Appl. Ocean Res.
120
,
103078
(
2022
).
38.
Z.
Xu
,
L.
Lin
,
H.
Yu
,
W.-L.
Chen
, and
D.
Gao
, “
Wake flow control of a square cylinder via distributed jets over the rear porous surface
,”
Ocean Eng.
281
,
114819
(
2023
).
39.
L.
Zhou
,
H.
Li
,
T. K.
Tse
,
X.
He
,
G. Y. C.
Maceda
, and
H.
Zhang
, “
Sensitivity-aided active control of flow past twin cylinders
,”
Int. J. Mech. Sci.
242
,
108013
(
2023
).
40.
L.
Yan
,
Y.
Li
,
G.
Hu
,
W.-L.
Chen
,
W.
Zhong
, and
B. R.
Noack
, “
Stabilizing the square cylinder wake using deep reinforcement learning for different jet locations
,”
Phys. Fluids
35
,
115104
(
2023
).
41.
S.
Malekzadeh
and
A.
Sohankar
, “
Reduction of fluid forces and heat transfer on a square cylinder in a laminar flow regime using a control plate
,”
Int. J. Heat Fluid Flow
34
,
15
27
(
2012
).
42.
A. S.
Abograis
and
A. E.
Alshayji
, “
Reduction of fluid forces on a square cylinder in a laminar flow using passive control methods
,” in
Proceedings of the COMSOL Conference
(Comsol,
2013
), pp.
9
11
.
43.
S.
Malekzadeh
,
I.
Mirzaee
, and
N.
Pourmahmoud
, “
Reynolds number effects on three-dimensional flow control over a square cylinder
,”
Fluid Dyn. Res.
50
,
025512
(
2018
).
44.
Z.-U.
Islam
,
S.-U.
Islam
,
C. Y.
Zhou
, and
N.
Sheikh
, “
Numerical study of reduction of fluid forces acting on a square cylinder using a control plate
,”
J. Braz. Soc. Mech. Sci. Eng.
44
,
4
(
2022
).
45.
Y.
Ma
,
R.
Mohebbi
,
M. M.
Rashidi
, and
Z.
Yang
, “
Numerical simulation of flow over a square cylinder with upstream and downstream circular bar using lattice Boltzmann method
,”
Int. J. Mod. Phys. C
29
,
1850030
(
2018
).
46.
M. K.
Chauhan
,
S.
Dutta
, and
B. K.
Gandhi
, “
Wake flow modification behind a square cylinder using control rods
,”
J. Wind Eng. Ind. Aerodyn.
184
,
342
361
(
2019
).
47.
A.
Gupta
and
A. K.
Saha
, “
Suppression of vortex shedding in flow around a square cylinder using control cylinder
,”
Eur. J. Mech. -B/Fluids
76
,
276
291
(
2019
).
48.
Y.
Ma
,
M. M.
Rashidi
, and
Z.-G.
Yang
, “
Numerical simulation of flow past a square cylinder with a circular bar upstream and a splitter plate downstream
,”
J. Hydrodyn.
31
,
949
964
(
2019
).
49.
W.
Chen
,
Y.
Bao
,
W.
Chai
,
J.
Li
,
C.-K.
Rheem
,
Y.
Lin
, and
X.
Li
, “
Investigation of the combined effect of control rods and forced rotation on a cylinder
,”
Phys. Fluids
35
,
103605
(
2023
).
50.
M. K.
Chauhan
,
S.
Dutta
,
B. S.
More
, and
B. K.
Gandhi
, “
Experimental investigation of flow over a square cylinder with an attached splitter plate at intermediate Reynolds number
,”
J. Fluids Struct.
76
,
319
335
(
2018
).
51.
E. M.
Binyet
,
J.-Y.
Chang
, and
C.-Y.
Huang
, “
Flexible plate in the wake of a square cylinder for piezoelectric energy harvesting—Parametric study using fluid–structure interaction modeling
,”
Energies
13
,
2645
(
2020
).
52.
S. M.
Dash
,
M. S.
Triantafyllou
, and
P. V. Y.
Alvarado
, “
A numerical study on the enhanced drag reduction and wake regime control of a square cylinder using dual splitter plates
,”
Comput. Fluids
199
,
104421
(
2020
).
53.
K. R.
Sharma
and
S.
Dutta
, “
Flow control over a square cylinder using attached rigid and flexible splitter plate at intermediate flow regime
,”
Phys. Fluids
32
,
014104
(
2020
).
54.
C.
Wang
and
Y.
Li
, “
Control of a circular cylinder flow using attached solid/perforated splitter plates at deflection angles
,”
Phys. Fluids
35
,
105109
(
2023
).
55.
C.-H.
Bruneau
and
I.
Mortazavi
, “
Numerical modelling and passive flow control using porous media
,”
Comput. Fluids
37
,
488
498
(
2008
).
56.
C.-H.
Bruneau
,
I.
Mortazavi
, and
P.
Gilliéron
, “
Passive control around the two-dimensional square back Ahmed body using porous devices
,”
J. Fluids Eng.
130
,
061101
(
2008
).
57.
C.-H.
Bruneau
,
E.
Creusé
,
D.
Depeyras
,
P.
Gilliéron
, and
I.
Mortazavi
, “
Coupling active and passive techniques to control the flow past the square back Ahmed body
,”
Comput. Fluids
39
,
1875
1892
(
2010
).
58.
Y.
Bae
and
Y. J.
Moon
, “
Effect of passive porous surface on the trailing-edge noise
,”
Phys. Fluids
23
,
126101
(
2011
).
59.
F. M.
Rong
,
Z. L.
Guo
,
J. H.
Lu
, and
B. C.
Shi
, “
Numerical simulation of the flow around a porous covering square cylinder in a channel via lattice Boltzmann method
,”
Int. J. Numer. Methods Fluids
65
,
1217
1230
(
2011
).
60.
Z.
Hu
,
H.
Liu
,
N.
Chen
,
J.
Hu
, and
F.
Tong
, “
Vortex shedding noise and flow mode analysis of cylinder with full/partial porous coating
,”
Aerosp. Sci. Technol.
106
,
106154
(
2020
).
61.
Z.
Li
,
T.
Tang
,
Y.
Liu
,
E. J.
Arcondoulis
, and
Y.
Yang
, “
Numerical study of aerodynamic and aeroacoustic characteristics of flow over porous coated cylinders: Effects of porous properties
,”
Aerosp. Sci. Technol.
105
,
106042
(
2020
).
62.
K.
Wen
,
E. J.
Arcondoulis
,
Z.
Li
, and
Y.
Liu
, “
Structure resolved simulations of flow around porous coated cylinders based on a simplified pore-scale model
,”
Aerosp. Sci. Technol.
119
,
107181
(
2021
).
63.
G.
Chen
,
S.
Chen
,
G.
Qian
,
Y.
Yang
, and
P.
Xie
, “
Direct numerical simulations of flows around an array of rough cylinders partially coated with porous media at Re = 3900
,”
Phys. Fluids
35
,
093113
(
2023
).
64.
R.
Zamponi
,
D.
Ragni
,
S.
van der Zwaag
, and
F.
Avallone
, “
Innovative coatings for reducing flow-induced cylinder noise by altering the sound diffraction
,”
Phys. Fluids
35
,
127120
(
2023
).
65.
H.
Feng
,
L.
Chen
, and
Y.
Dong
, “
Modulation of wake evolution, separation, and radiated noise by a cylinder with porous media cladding
,”
Phys. Fluids
35
,
115129
(
2023
).
66.
E. J. G.
Arcondoulis
,
Y.
Liu
,
Z.
Li
,
Y.
Yang
, and
Y.
Wang
, “
Structured porous material design for passive flow and noise control of cylinders in uniform flow
,”
Materials
12
,
2905
(
2019
).
67.
R. W.
Davis
,
E. F.
Moore
, and
L. P.
Purtell
, “
A numerical-experimental study of confined flow around rectangular cylinders
,”
Phys. Fluids
27
,
46
(
1984
).
68.
T.
Abdelhamid
,
M. M.
Alam
, and
M.
Islam
, “
Heat transfer and flow around cylinder: Effect of corner radius and Reynolds number
,”
Int. J. Heat Mass Transfer
171
,
121105
(
2021
).
69.
S.
Popinet
, “
Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries
,”
J. Comput. Phys.
190
,
572
600
(
2003
).
70.
S.
Popinet
,
M.
Smith
, and
C.
Stevens
, “
Experimental and numerical study of the turbulence characteristics of airflow around a research vessel
,”
J. Atmos. Oceanic Technol.
21
,
1575
1589
(
2004
).
71.
S.
Popinet
, “
An accurate adaptive solver for surface-tension-driven interfacial flows
,”
J. Comput. Phys.
228
,
5838
5866
(
2009
).
72.
H.
Johansen
and
P.
Colella
, “
A Cartesian grid embedded boundary method for Poisson's equation on irregular domains
,”
J. Comput. Phys.
147
,
60
85
(
1998
).
73.
D.
Modiano
and
P.
Colella
, “
A higher-order embedded boundary method for time-dependent simulation of hyperbolic conservation laws
,”
Technical Report No. LBNL-45239-18
,
2000
.
74.
P.
McCorquodale
,
P.
Colella
, and
H.
Johansen
, “
A Cartesian grid embedded boundary method for the heat equation on irregular domains
,”
J. Comput. Phys.
173
,
620
635
(
2001
).
75.
P.
Schwartz
,
M.
Barad
,
P.
Colella
, and
T.
Ligocki
, “
A Cartesian grid embedded boundary method for the heat equation and Poisson's equation in three dimensions
,”
J. Comput. Phys.
211
,
531
550
(
2006
).
76.
K.
Schneider
and
O. V.
Vasilyev
, “
Wavelet methods in computational fluid dynamics
,”
Annu. Rev. Fluid Mech.
42
,
473
503
(
2010
).
77.
J. A.
Van Hooft
,
S.
Popinet
,
C. C.
Van Heerwaarden
,
S. J. A.
Van Der Linden
,
S. R.
De Roode
, and
B. J. H.
Van De Wiel
, “
Towards adaptive grids for atmospheric boundary-layer simulations
,”
Boundary Layer Meteorol.
167
,
421
443
(
2018
).
78.
Z.
Cheng
and
A.
Wachs
, “
An immersed boundary/multi-relaxation time lattice Boltzmann method on adaptive octree grids for the particle-resolved simulation of particle-laden flows
,”
J. Comput. Phys.
471
,
111669
(
2022
).
79.
D. P.
Huet
and
A.
Wachs
, “
A Cartesian-octree adaptive front-tracking solver for immersed biological capsules in large complex domains
,”
J. Comput. Phys.
492
,
112424
(
2023
).
80.
F.
Mohaghegh
and
H.
Udaykumar
, “
Comparison of sharp and smoothed interface methods for simulation of particulate flows II: Inertial and added mass effects
,”
Comput. Fluids
143
,
103
119
(
2017
).
81.
A.
Okajima
, “
Strouhal numbers of rectangular cylinders
,”
J. Fluid Mech.
123
,
379
398
(
1982
).
82.
H.
Schlichting
and
K.
Gersten
,
Boundary-Layer Theory
(
Springer
,
Berlin, Heidelberg
,
2017
).
83.
L.
Howarth
, “
On the solution of the laminar boundary layer equations
,”
Proc. R. Soc. London, Ser. A
164
,
547
579
(
1938
).
You do not currently have access to this content.