We consider how a liquid front propagating through an initially dry channel network selects its path when encountering branch junctions. We employ both experimental observation and theoretical analysis to investigate the path selection dynamics depending on liquid properties, pressure-driven flow rate, and channel geometry. We identify three distinct front propagation types at the junction, namely, straight, diverging, and diverting flows, and construct their regime map with theoretical regime boundaries. These flow types at the junction determine the subsequent channel-filling patterns, which we also identify and categorize. Our results allow us to design small-scale channel networks to precisely deliver or distribute functional liquids, which can be applied to lab-on-a-chip systems, liquid sculpture, and porous flow control.

1.
D. J.
Beebe
,
G. A.
Mensing
, and
G. M.
Walker
, “
Physics and applications of microfluidics in biology
,”
Annu. Rev. Biomed. Eng.
4
,
261
286
(
2002
).
2.
K. W.
Lawson
and
D. R.
Lloyd
, “
Membrane distillation
,”
J. Membr. Sci.
124
,
1
25
(
1997
).
3.
L.
Eykens
,
K.
De Sitter
,
C.
Dotremont
,
L.
Pinoy
, and
B.
Van der Bruggen
, “
How to optimize the membrane properties for membrane distillation: A review
,”
Ind. Eng. Chem. Res.
55
,
9333
9343
(
2016
).
4.
M. K.
Um
and
W. I.
Lee
, “
A study on the mold filling process in resin transfer molding
,”
Polym. Eng. Sci.
31
,
765
771
(
1991
).
5.
D. J.
Coyle
,
J. W.
Blake
, and
C. W.
Macosko
, “
The kinematics of fountain flow in mold–filling
,”
AIChE J.
33
,
1168
1177
(
1987
).
6.
E.
Detournay
, “
Mechanics of hydraulic fractures
,”
Annu. Rev. Fluid Mech.
48
,
311
339
(
2016
).
7.
D. A.
Mendelsohn
, “
A review of hydraulic fracture modeling—Part I: General concepts, 2D models, motivation for 3D modeling
,”
J. Energy Resour. Technol.
106
,
369
376
(
1984
).
8.
E. W.
Washburn
, “
The dynamics of capillary flow
,”
Phys. Rev.
17
,
273
283
(
1921
).
9.
J.
Ha
and
H.-Y.
Kim
, “
Capillarity in soft porous solids
,”
Annu. Rev. Fluid Mech.
52
,
263
284
(
2020
).
10.
J.
Kim
and
H. Y.
Kim
, “
On the dynamics of capillary imbibition
,”
J. Mech. Sci. Technol.
26
,
3795
3801
(
2012
).
11.
J. H.
Snoeijer
and
B.
Andreotti
, “
Moving contact lines: Scales, regimes, and dynamical transitions
,”
Annu. Rev. Fluid Mech.
45
,
269
292
(
2013
).
12.
R. L.
Hoffman
, “
A study of the advancing interface. I. Interface shape in liquid–gas systems
,”
J. Colloid Interface Sci.
50
,
228
241
(
1975
).
13.
C.
Huh
and
L. E.
Scriven
, “
Hydrodynamic model of steady movement of a solid/liquid/fluid contact line
,”
J. Colloid Interface Sci.
35
,
85
101
(
1971
).
14.
R. J.
Hansen
and
T. Y.
Toong
, “
Dynamic contact angle and its relationship to forces of hydrodynamic origin
,”
J. Colloid Interface Sci.
37
,
196
207
(
1971
).
15.
R. L.
Cerro
, “
Moving contact lines and Langmuir–Blodgett film deposition
,”
J. Colloid Interface Sci.
257
,
276
283
(
2003
).
16.
E.
Mitsoulis
, “
Fountain flow revisited: The effect of various fluid mechanics parameters
,”
AIChE J.
56
,
1147
1162
(
2010
).
17.
B.
Zhao
,
A. A.
Pahlavan
,
L.
Cueto-Felgueroso
, and
R.
Juanes
, “
Forced wetting transition and bubble pinch-off in a capillary tube
,”
Phys. Rev. Lett.
120
,
084501
(
2018
).
18.
C.
Colosi
,
S. R.
Shin
,
V.
Manoharan
,
S.
Massa
,
M.
Costantini
,
A.
Barbetta
,
M. R.
Dokmeci
,
M.
Dentini
, and
A.
Khademhosseini
, “
Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink
,”
Adv. Mater.
28
,
677
684
(
2016
).
19.
N. A.
Dudukovic
,
E. J.
Fong
,
H. B.
Gemeda
,
J. R.
DeOtte
,
M. R.
Cerón
,
B. D.
Moran
,
J. T.
Davis
,
S. E.
Baker
, and
E. B.
Duoss
, “
Cellular fluidics
,”
Nature
595
,
58
65
(
2021
).
20.
J.
Ko
,
Y.
Lee
,
S.
Lee
,
S. R.
Lee
, and
N. L.
Jeon
, “
Human ocular angiogenesis–inspired vascular models on an injection–molded microfluidic chip
,”
Adv. Healthcare Mater.
8
,
1900328
(
2019
).
21.
B.
Lee
,
S.
Kim
,
J.
Ko
,
S.-R.
Lee
,
Y.
Kim
,
S.
Park
,
J.
Kim
,
S.
Hyung
,
H.-Y.
Kim
, and
N. L.
Jeon
, “
3D micromesh-based hybrid bioprinting: Multidimensional liquid patterning for 3D microtissue engineering
,”
NPG Asia Mater.
14
,
6
(
2022
).
22.
M.
Yafia
,
O.
Ymbern
,
A. O.
Olanrewaju
,
A.
Parandakh
,
A.
Sohrabi Kashani
,
J.
Renault
,
Z.
Jin
,
G.
Kim
,
A.
Ng
, and
D.
Juncker
, “
Microfluidic chain reaction of structurally programmed capillary flow events
,”
Nature
605
,
464
469
(
2022
).
23.
S.
Li
,
Z.
Ma
,
Z.
Cao
,
L.
Pan
, and
Y.
Shi
, “
Advanced wearable microfluidic sensors for healthcare monitoring
,”
Small
16
,
1903822
(
2020
).
24.
R. K.
Arun
,
S.
Halder
,
N.
Chanda
, and
S.
Chakraborty
, “
A paper based self-pumping and self-breathing fuel cell using pencil stroked graphite electrodes
,”
Lab Chip
14
,
1661
1664
(
2014
).
25.
S. S.
Das
,
S.
Kar
,
T.
Anwar
,
P.
Saha
, and
S.
Chakraborty
, “
Hydroelectric power plant on a paper strip
,”
Lab Chip
18
,
1560
1568
(
2018
).
26.
A.
Olanrewaju
,
M.
Beaugrand
,
M.
Yafia
, and
D.
Juncker
, “
Capillary microfluidics in microchannels: From microfluidic networks to capillaric circuits
,”
Lab Chip
18
,
2323
2347
(
2018
).
27.
J.
Hu
,
L.
Chen
,
P.
Zhang
,
K.
Hsieh
,
H.
Li
,
S.
Yang
, and
T. H.
Wang
, “
A vacuum-assisted, highly parallelized microfluidic array for performing multi-step digital assays
,”
Lab Chip
21
,
4716
4724
(
2021
).
28.
H.
Tachibana
,
M.
Saito
,
K.
Tsuji
,
K.
Yamanaka
, and
E.
Tamiya
, “
Self-propelled continuous-flow PCR in capillary-driven microfluidic device: Microfluidic behavior and DNA amplification
,”
Sens. Actuators B
206
,
303
310
(
2015
).
29.
X.
Gao
,
J.
Li
,
C.
Li
,
Z.
Zhang
,
W.
Zhang
,
J.
Yao
,
M.
Guan
,
Z.
Guo
,
C.
Li
, and
L.
Zhou
, “
High filling rate digital PCR through-hole array chip with double independent S-shaped flow channels
,”
Biomicrofluidics
14
,
034109
(
2020
).
30.
S.
Han
and
K. K.
Wang
, “
Analysis of the flow of encapsulant during underfill encapsulation of flip-chips
,”
IEEE Trans. Compon. Packag. Manuf. Technol. Part B
20
,
424
433
(
1997
).
31.
C. Y.
Khor
,
M. A.
Mujeebu
,
M. Z.
Abdullah
, and
F. C.
Ani
, “
Finite volume based CFD simulation of pressurized flip-chip underfill encapsulation process
,”
Microelectron. Reliab.
50
,
98
105
(
2010
).
32.
J.
Tóth
,
Gravitational Systems of Groundwater Flow: Theory, Evaluation, Utilization
(
Cambridge University Press
,
Cambridge
,
2009
).
33.
J. M.
Hunt
, “
Generation and migration of petroleum from abnormally pressured fluid compartments
,”
AAPG Bull.
74
,
1
12
(
1990
).
34.
J. F.
Oliver
,
C.
Huh
, and
S. G.
Mason
, “
Resistance to spreading of liquids by sharp edges
,”
J. Colloid Interface Sci.
59
,
568
581
(
1977
).
35.
M.
Do-Quang
,
J.
Shiomi
, and
G.
Amberg
, “
When and how surface structure determines the dynamics of partial wetting
,”
Europhys. Lett.
110
,
46002
(
2015
).
36.
H.
Cho
,
H.-Y.
Kim
,
J. Y.
Kang
, and
T. S.
Kim
, “
How the capillary burst microvalve works
,”
J. Colloid Interface Sci.
306
,
379
385
(
2007
).
37.
W. J. A.
de Wijs
,
J.
Laven
, and
G.
de With
, “
Wetting forces and meniscus pinning at geometrical edges
,”
AIChE J.
62
,
4453
4465
(
2016
).
You do not currently have access to this content.