We employ three-dimensional, fully resolved numerical simulations using the volume-of-fluid method to study the motion and interaction of two in-line bubbles ascending in both Newtonian and shear-thinning fluids. Additionally, we explore passive scalar transfer between the fluid phases across a variety of fluidic conditions, modeling shear-thinning behavior in non-Newtonian fluids through the Carreau model. The impact of the Galilei (Ga) and Bond (Bo) numbers, the bubble pair radius ratio, the inelastic time constant (λ), and the flow index (n) on the bubbles dynamics and the transient Sherwood number (Sht) and the surface-averaged Sherwood number ( S h ) are reported. Using the well-known GaBo regime phase diagram for a single rising bubble in a Newtonian ambient fluid, the present numerical experiments are used to study the departure from this reference case due to the presence and characteristics of a second bubble and the non-Newtonian nature of the ambient fluid. When categorized based on the single bubble phase diagram, we found that in regimes I (axisymmetric) and III (oscillatory), a pair of bubbles does not breakup or merge during our simulations. However, their behaviors vary due to the second bubble and change in non-Newtonian fluid parameters like the inelastic time constant and flow index. Likewise, we explored this parameter space for regime II (skirted), where the two bubbles eventually merge, and regimes IV (peripheral breakup) and V (central breakup), known for multiple bubble breakups. Additionally, we present results on differently sized bubbles, showing that their merging tendency depends on their arrangement as leading or trailing positions in the pair.

1.
L.
Deike
,
W. K.
Melville
, and
S.
Popinet
, “
Air entrainment and bubble statistics in breaking waves
,”
J. Fluid Mech.
801
,
91
129
(
2016
).
2.
N.
Kantarci
,
F.
Borak
, and
K. O.
Ulgen
, “
Bubble column reactors
,”
Process Biochem.
40
,
2263
2283
(
2005
).
3.
A.
Moosavi
,
M.
Abbasalizadeh
, and
H.
Sadighi Dizaji
, “
Optimization of heat transfer and pressure drop characteristics via air bubble injection inside a shell and coiled tube heat exchanger
,”
Exp. Therm. Fluid Sci.
78
,
1
9
(
2016
).
4.
M.
Schlüter
,
S.
Herres-Pawlis
,
U.
Nieken
,
U.
Tuttlies
, and
D.
Bothe
, “
Small-scale phenomena in reactive bubbly flows: Experiments, numerical modeling, and applications
,”
Annu. Rev. Chem. Biomol. Eng.
12
,
625
643
(
2021
).
5.
S.
Sarkar
and
R. P.
Selvam
, “
Direct numerical simulation of heat transfer in spray cooling through 3D multiphase flow modeling using parallel computing
,”
J. Heat Transfer
131
,
121007
(
2009
).
6.
Y.
Shirai
,
M.
Wakisaka
,
O.
Miyawaki
, and
S.
Sakashita
, “
Effect of seed ice on formation of tube ice with high purity for a freeze wastewater treatment system with a bubble-flow circulator
,”
Water Res.
33
,
1325
1329
(
1999
).
7.
L.
Wang
,
H.-G.
Lee
, and
P.
Hayes
, “
A new approach to molten steel refining using fine gas bubbles
,”
ISIJ Int.
36
,
17
24
(
1996
).
8.
M. C.
Boufadel
,
S.
Socolofsky
,
J.
Katz
,
D.
Yang
,
C.
Daskiran
, and
W.
Dewar
, “
A review on multiphase underwater jets and plumes: Droplets, hydrodynamics, and chemistry
,”
Rev. Geophys.
58
,
e2020RG000703
, https://doi.org/10.1029/2020RG000703 (
2020
).
9.
D.
Bhaga
and
M.
Weber
, “
In-line interaction of a pair of bubbles in a viscous liquid
,”
Chem. Eng. Sci.
35
,
2467
2474
(
1980
).
10.
J.
Katz
and
C.
Meneveau
, “
Wake-induced relative motion of bubbles rising in line
,”
Int. J. Multiphase Flow
22
,
239
258
(
1996
).
11.
M.
Watanabe
and
T.
Sanada
, “
In-line motion of a pair of bubbles in a viscous liquid
,”
JSME Int. J., Ser. B
49
,
410
418
(
2006
).
12.
T.
Sanada
,
A.
Sato
,
M.
Shirota
, and
M.
Watanabe
, “
Motion and coalescence of a pair of bubbles rising side by side
,”
Chem. Eng. Sci.
64
,
2659
2671
(
2009
).
13.
H.
Kusuno
and
T.
Sanada
, “
Experimental investigation of the motion of a pair of bubbles at intermediate Reynolds numbers
,”
Multiphase Sci. Technol.
27
,
51
66
(
2015
).
14.
H.
Kusuno
,
H.
Yamamoto
, and
T.
Sanada
, “
Lift force acting on a pair of clean bubbles rising in-line
,”
Phys. Fluids
31
,
072105
(
2019
).
15.
H.
Yuan
and
A.
Prosperetti
, “
On the in-line motion of two spherical bubbles in a viscous fluid
,”
J. Fluid Mech.
278
,
325
349
(
1994
).
16.
L.
Chen
,
S. V.
Garimella
,
J. A.
Reizes
, and
E.
Leonardi
, “
Motion of interacting gas bubbles in a viscous liquid including wall effects and evaporation
,”
Numer. Heat Transfer, Part A
31
,
629
654
(
1997
).
17.
N.
Hasan
and
Z.
binti Zakaria
, “
Computational approach for a pair of bubble coalescence process
,”
Int. J. Heat Fluid Flow
32
,
755
761
(
2011
).
18.
R.
Chen
,
W.
Tian
,
G.
Su
,
S.
Qiu
,
Y.
Ishiwatari
, and
Y.
Oka
, “
Numerical investigation on coalescence of bubble pairs rising in a stagnant liquid
,”
Chem. Eng. Sci.
66
,
5055
5063
(
2011
).
19.
M.
Tripathi
,
P. A.
Ram
,
K.
Sahu
, and
R.
Govindarajan
, “
Two initially spherical bubbles rising in quiescent liquid
,”
Phys. Rev. Fluids
2
,
073601
(
2017
).
20.
Y.
Zhang
,
K.
Chen
,
Y.
You
, and
W.
Ren
, “
Coalescence of two initially spherical bubbles: Dual effect of liquid viscosity
,”
Int. J. Heat Fluid Flow
72
,
61
72
(
2018
).
21.
Y.
Cao
and
R.
Macián-Juan
, “
The wobbling motion of single and two inline bubbles rising in quiescent liquid
,”
Phys. Fluids
33
,
073305
(
2021
).
22.
A.
Kumar
,
B.
Ray
, and
G.
Biswas
, “
Dynamics of two coaxially rising gas bubbles
,”
Phys. Fluids
33
,
052106
(
2021
).
23.
J. R.
Vélez-Cordero
,
D.
Sámano
,
P.
Yue
,
J. J.
Feng
, and
R.
Zenit
, “
Hydrodynamic interaction between a pair of bubbles ascending in shear-thinning inelastic fluids
,”
J. Non-Newtonian Fluid Mech.
166
,
118
132
(
2011
).
24.
W.
Fan
and
X.
Yin
, “
Numerical study on interaction between two bubbles rising side by side in CMC solution
,”
Chin. J. Chem. Eng.
21
,
705
713
(
2013
).
25.
M. T.
Islam
,
P.
Ganesan
, and
J.
Cheng
, “
A pair of bubbles' rising dynamics in a xanthan gum solution: A CFD study
,”
RSC Adv.
5
,
7819
7831
(
2015
).
26.
J.
Liu
,
C.
Zhu
,
X.
Wang
,
T.
Fu
,
Y.
Ma
, and
H.
Li
, “
Three-dimensional numerical simulation of coalescence and interactions of multiple horizontal bubbles rising in shear-thinning fluids
,”
AIChE J.
61
,
3528
3546
(
2015
).
27.
W.
Sun
,
C.
Zhu
,
T.
Fu
,
Y.
Ma
, and
H.
Li
, “
3D simulation of interaction and drag coefficient of bubbles continuously rising with equilateral triangle arrangement in shear-thinning fluids
,”
Int. J. Multiphase Flow
110
,
69
81
(
2019
).
28.
W.
Sun
,
C.
Zhu
,
T.
Fu
,
Y.
Ma
, and
H.
Li
, “
Interaction and drag coefficient of three horizontal bubbles with different sizes rising in the shear-thinning fluids
,”
Int. J. Multiphase Flow
125
,
103214
(
2020
).
29.
Y.
Bao
,
J.
Jia
,
S.
Tong
,
Z.
Gao
, and
Z.
Cai
, “
A review on single bubble gas–liquid mass transfer
,”
Chin. J. Chem. Eng.
28
,
2707
2722
(
2020
).
30.
L.
Zhang
,
C.
Yang
, and
Z.-S.
Mao
, “
Numerical simulation of a bubble rising in shear-thinning fluids
,”
J. Non-Newtonian Fluid Mech.
165
,
555
567
(
2010
).
31.
A.
Premlata
,
M. K.
Tripathi
,
B.
Karri
, and
K. C.
Sahu
, “
Numerical and experimental investigations of an air bubble rising in a Carreau-Yasuda shear-thinning liquid
,”
Phys. Fluids
29
,
033103
(
2017
).
32.
J. C.
Cano-Lozano
,
C.
Martínez-Bazán
,
J.
Magnaudet
, and
J.
Tchoufag
, “
Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability
,”
Phys. Rev. Fluids
1
,
053604
(
2016
).
33.
J.
Brackbill
,
D.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
34.
K.
Yasuda
,
R. C.
Armstrong
, and
R. E.
Cohen
, “
Shear flow properties of concentrated solutions of linear and star branched polystyrenes
,”
Rheol. Acta
20
,
163
178
(
1981
).
35.
S.
Popinet
, see http://basilisk.fr/src/test/beach-ml.c for “
Solitary wave run-up on a plane beach
” (
2019
).
36.
P.
Karnakov
,
S.
Litvinov
, and
P.
Koumoutsakos
, “
A hybrid particle volume-of-fluid method for curvature estimation in multiphase flows
,”
Int. J. Multiphase Flow
125
,
103209
103209
(
2020
).
37.
J.
López-Herrera
,
S.
Popinet
, and
A.
Castrejón-Pita
, “
An adaptive solver for viscoelastic incompressible two-phase problems applied to the study of the splashing of weakly viscoelastic droplets
,”
J. Non-Newtonian Fluid Mech.
264
,
144
158
(
2019
).
38.
S.
Popinet
, “
An accurate adaptive solver for surface-tension-driven interfacial flows
,”
J. Comput. Phys.
228
,
5838
5866
(
2009
).
39.
K.
Kazemi
,
A.
Vernet
,
F. X.
Grau
,
S.
Cito
, and
A.
Fabregat
, “
Passive scalar transfer rate at bubble interface in Carreau liquid in a transition regime
,”
Int. J. Multiphase Flow
150
,
104000
(
2022
).
40.
G.
Brereton
and
D.
Korotney
, “
Coaxial and oblique coalescence of two rising bubbles
,” in
Dynamics of Bubbles and Vortices Near a Free Surface
(
ASME
,
1991
), AMD Vol.
119
, pp.
50
73
.
41.
I.
Chakraborty
,
G.
Biswas
, and
P.
Ghoshdastidar
, “
A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids
,”
Int. J. Heat Mass Transfer
58
,
240
259
(
2013
).
42.
D.
Bhaga
and
M. E.
Weber
, “
Bubbles in viscous liquids: Shapes, wakes and velocities
,”
J. Fluid Mech.
105
,
61
85
(
1981
).
43.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops, and Particles
(
Courier Corporation
,
2005
).
44.
M.
Tripathi
,
K.
Sahu
, and
R.
Govindarajan
, “
Dynamics of an initially spherical bubble rising in quiescent liquid
,”
Nat. Commun.
6
,
6268
(
2015
).
45.
D.
Colombet
,
D.
Legendre
,
A.
Cockx
, and
P.
Guiraud
, “
Mass or heat transfer inside a spherical gas bubble at low to moderate Reynolds number
,”
Int. J. Heat Mass Transfer
67
,
1096
1105
(
2013
).
46.
G.
Juncu
, “
A numerical study of the unsteady heat/mass transfer inside a circulating sphere
,”
Int. J. Heat Mass Transfer
53
,
3006
3012
(
2010
).
47.
M. J. M.
Hill
, “
VI. On a spherical vortex
,”
Philos. Trans. R. Soc. London A
185
,
213
245
(
1894
).
48.
I.
Lashgari
,
J. O.
Pralits
,
F.
Giannetti
, and
L.
Brandt
, “
First instability of the flow of shear-thinning and shear-thickening fluids past a circular cylinder
,”
J. Fluid Mech.
701
,
201
227
(
2012
).
49.
M.
Roudet
,
A.-M.
Billet
,
S.
Cazin
,
F.
Risso
, and
V.
Roig
, “
Experimental investigation of interfacial mass transfer mechanisms for a confined high-Reynolds-number bubble rising in a thin gap
,”
AIChE J.
63
,
2394
(
2017
).
You do not currently have access to this content.